
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2008; 20:1591–1609
Published online 14March 2008 inWiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe.1307

A toolkit for modelling and
simulating data Grids:
an extension to GridSim

Anthony Sulistio1, Uros Cibej2, Srikumar Venugopal1,
Borut Robic2 and Rajkumar Buyya1,∗,†

1GRIDS Laboratory, Department of Computer Science & Software Engineering,
The University of Melbourne, Melbourne, Vic., Australia
2Faculty of Computer & Information Science, The University of Ljubljana,
25 Trzaska, 1000 Ljubljana, Slovenia

SUMMARY

Data Grids are an emerging technology for managing large amounts of distributed data. This technology
is highly anticipated by scientific communities, such as in the area of astronomy and high-energy physics,
because their experiments generate massive amounts of data which need to be shared and analysed. Since
it is not feasible to test different usages on real testbeds, it is easier to use simulations as a means of
studying complex scenarios. This paper presents our work on incorporating data Grids features as an
extension to GridSim, a computational Grid simulator. The extension provides essential building blocks
for simulating various data Grids scenarios. Moreover, it is designed to be easily extended. This approach
makes it easy to try various strategies and to add functionalities to suit the needs of other communities.
This paper also gives a detailed description of the design and usage examples demonstrating the versatility
of this tool. Copyright © 2008 John Wiley & Sons, Ltd.

Received 17 April 2007; Revised 10 August 2007; Accepted 2 December 2007

KEY WORDS: Grid computing; Grid simulation; data Grids

1. INTRODUCTION

Grid computing is an emerging technology that focuses on uniformly aggregating and sharing
distributed heterogeneous resources for solving large-scale applications in science, engineering,

∗Correspondence to: Rajkumar Buyya, GRIDS Laboratory, Department of Computer Science & Software Engineering, The
University of Melbourne, Melbourne, Vic., Australia.

†E-mail: raj@csse.unimelb.edu.au

Contract/grant sponsor: Australian Research Council (ARC)
Contract/grant sponsor: Australian Department of Education, Science and Training (DEST)

Copyright q 2008 John Wiley & Sons, Ltd.

1592 A. SULISTIO ET AL.

and commerce [1]. Data Grids provide infrastructure for those who access, transfer, and manage
large data sets stored in distributed repositories [2,3]. Data Grids focus on satisfying requirements
of scientific collaborations that have large collections of shared data and where there is a need for
analysing the data and sharing the results among the collaborators. Such applications are commonly
found in the area of astronomy [4], climate simulation [5], and high-energy physics [3].
There are two basic building blocks for a data Grid [2]: (i) a high-performance data transfer system

that enables secure copying ofmassive data sets and (ii) a scalable discovery andmanagement system
for replicas of data sets. Other services that are required to provide the complete functionality of
a data Grid include management of shared data set collections, resource allocation for processing,
transfer and storage operations, and fine-grained access controls for data sets.
A high-level overview of data Grid is shown in Figure 1 [6]. A scientific instrument, e.g. a

satellite dish, generates large data sets that are stored in a data centre. The data centre then notifies
a replica catalog (RC) about a list of available data sets in the centre. Then this RC will synchronize
its information with other RCs. This approach allows resources to request for copies of the data
sets to the nearest RC when a user submits his/her jobs. The RCs may be arranged in different
topologies depending on the requirements of the application domain, the size of the collaboration
around the application, and its geographical distribution [6].
The LHCGrid [7] project that serves scientific collaborations performing experiments at the large

Hadron collider (LHC) in CERN has adopted a hierarchical model in which the data are replicated
at various levels: from a tier0 node (at CERN) that acts as a root level to tierN nodes (at a
leaf level) that respond to requests from regional institutions or organizations in different nations.

Figure 1. A high-level overview of data Grid [6].

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:1591–1609
DOI: 10.1002/cpe

A TOOLKIT FOR SIMULATING DATA GRIDS 1593

This approach increases the data availability across all levels and reduces the load on the root node
when a large number of requests are generated.
On the other hand, the nature of the experiment determines the distribution of data in a project. For

example, a scientific project with only a single source of data and limited geographical distribution
of users, such as the Biogrid [8] project, may opt for a simple monadic model. A different project
that integrates existing independent sources of data, such as the Virtual Observatory [9] project,
may decide for a more complex federated model.
In a business community, companies such as Sybase and IBM Business Grid provide services and

solutions for managing their clients’ data into their existing Grid infrastructures and data centres.
For example, Avaki EII [10] from Sybase is an enterprise application integration software product
that provides data access through a single data layer and uses a federated approach to deliver data
from original sources. DECO [11] from IBM is a Grid meta-scheduler that integrates each job with
both computational and data transfer time. Thus, DECO is responsible for deciding which data to
replicate and when to replicate the data to other sites according to users’ quality of service (QoS)
requirements, such as cost and deadline [11].
From these illustrations, data Grids are shown to be complex, dynamic, and heterogeneous envi-

ronments. Therefore, it is difficult to evaluate new replication strategies and scheduling algorithms
in a repeatable and controlled manner. In addition, full-scale evaluation on a data Grid testbed
implies interference with processing workloads that may not be encouraged in a production envi-
ronment. Thus, it is apparent that simulation is required for testing data Grid strategies in complex
scenarios. This need has been recognized before and has led to the development of various data Grid
simulators, such as OptorSim [12], ChicSim [13], and MONARC [14]. However, as we will later
argue in Section 2, these systems have various shortcomings that reduce the flexibility of scenarios
that researchers can test against.
In this paper, we present an architecture and design of a data Grid simulation infrastructure

developed as an extension to GridSim [15,16]. GridSim has a complete set of features for simu-
lating realistic Grid testbeds. Such features are modelling heterogeneous computational resources
of variable performance, scheduling jobs based on time- or space-shared policy, differentiated net-
work service, and workload trace-based simulation from real supercomputers. More importantly,
GridSim allows the flexibility and extensibility to incorporate new components into its existing
infrastructure.
In this work, GridSim has been extended with the ability to handle: (1) replication of data to

several sites; (2) query for location of the replicated data; (3) access to the replicated data; and
(4) make complex queries about data attributes. With these new features, GridSim users will be
able to do integrated studies of on-demand replication strategies with jobs scheduling on available
resources. Therefore, the contribution of this paper is the abstraction of data Grid functionalities
integrated into GridSim, thus providing a comprehensive capability and integrated framework for
simulating data Grids. This will benefit a large base of GridSim users, since they can leverage our
proposed abstraction without the need to implement their own data Grid entities.
The remainder of this paper is organized as follows: Section 2 discusses related work, whereas

Section 3 mentions the GridSim architecture and components of data Grid realized in GridSim.
Section 4 discusses implementation of data Grid operations, based on the LHC experiment, using
GridSim components. Section 5 describes a construction of a complex simulation using the basic
building blocks in GridSim. Finally, Section 6 concludes the paper and suggests further work.

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:1591–1609
DOI: 10.1002/cpe

1594 A. SULISTIO ET AL.

2. RELATED WORK

There are some tools available, apart from GridSim, for application scheduling simulation in Grid
computing environments, such as OptorSim [12], Monarc [14], ChicSim [13], SimGrid [17], and
MicroGrid [18]. We compare these simulation tools based on three criteria: (1) the ability to handle
basic data Grid functionalities; (2) the ability to schedule compute- and/or data-intensive jobs;
and (3) the underlying network infrastructure. Differences among these simulators based on these
criteria are summarized in Table I. Note that the new data Grid features in GridSim are also included
in the comparison.
From Table I, it is shown that SimGrid and MicroGrid are mainly targeted as a general-purpose

grid simulator for computational Grids. Hence, they lack features that are core to data Grids, such
as data replication and query for the location of a replica. Although SimGrid has a flow-level
simulation of network traffic [19], it does not yet have the capability to simulate differentiated
network QoS. MicroGrid that uses a packet-level simulation of network also does not have this
feature. This differentiated network functionality is important for modelling QoS compliance for
data transfers in wide area network.
OptorSim has been developed as part of the EU DataGrid project [20]. It aims at studying the

effectiveness of data replication strategies. In addition, it incorporates some auction protocols and
economic models for replica optimization. In OptorSim, only data transfers are currently being
simulated, whereas GridSim is able to run both compute- and data-intensive jobs.
Monarc and ChicSim are grid simulators designed specifically to study different scheduling,

replication, and performance issues in data Grid environment. Hence, they provide a general and
extensible framework to implement and evaluate these issues. However, they lack one important
feature, i.e. the ability to generate background network traffic. This feature is important because in
real life, networks are shared among users and resources. Hence, congested networks can greatly
affect the overall replication and performance issues.
Other features in GridSim that these grid simulators do not have are complex file filtering or data

query (will be discussed further in Section 4), CPU reservation, and differentiated network QoS.
With network QoS, high-priority packets are transferred faster than normal ones under a heavy
load [16]. Therefore, network QoS is well suited for applications that require low latency and faster

Table I. Listing of functionalities and features for each grid simulator.

Functionalities GridSim OptorSim Monarc ChicSim SimGrid MicroGrid

Data replication Yes Yes Yes Yes No No
Disk I/O overheads Yes No Yes No No Yes
Complex file filtering or data query Yes No No No No No
Scheduling user jobs Yes No Yes Yes Yes Yes
CPU reservation of a resource Yes No No No No No
Workload trace-based simulation Yes No No Yes No No
Differentiated network Qos Yes No No No No No
Generate background Yes Yes No No Yes Yes
network traffic

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:1591–1609
DOI: 10.1002/cpe

A TOOLKIT FOR SIMULATING DATA GRIDS 1595

delivery of data generated by scientific instruments, such as in fire or earthquake detection and
brain activity analysis application.

3. MAPPING DATA GRID TO GridSim

The GridSim architecture with a new DataGrid layer is shown in Figure 2. GridSim is based on
SimJava2 [21], a general-purpose discrete-event simulation package implemented in Java. There-
fore, the first layer at the bottom of Figure 2 is managed by SimJava2 for handling the interaction
or events among GridSim components.
All components in GridSim communicate with each other through message-passing operations

defined by SimJava. The second layer models the core elements of the distributed infrastruc-
ture, namely Grid resources such as clusters, storage repositories, and network links. These core
components are absolutely essential to create simulations in GridSim. We will discuss later how
new resource types were introduced to model data Grid components. The third and fourth lay-
ers are concerned with modelling and simulation of services specific to computational and data
Grids, respectively. Some of the services provide functions common to both types of Grids,
such as information about available resources and managing job submission. In the case of data
Grids, job management also incorporates managing data transfers between computational and stor-
age resources. RCs, information services for files and data, are also specifically implemented
for data Grids. The fifth layer contains components that aid users in implementing their own
schedulers and resource brokers so that they can test their own algorithms and strategies. The
layer above this helps users define their own scenarios and configurations for validating their
algorithms.

Figure 2. GridSim architecture with the new data Grids layer.

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:1591–1609
DOI: 10.1002/cpe

1596 A. SULISTIO ET AL.

In the following paragraphs, we will discuss in detail the main components of a data Grid, such
as data sets, computing and storage resources, and replica directories (or catalogs), and how these
were implemented in GridSim.

3.1. Data sets

A data set represents a shared collection of data that can be accessed as a single unit. In reality,
a data set may be a collection of files on physical storage or it may just be a single massive file
containing records in a particular format. Within actual data Grids, data sets represent the lowest
level of organization of data. Data sets are replicated to improve either data access performance or
reliability or both.
Within GridSim, data sets are modelled using File objects. File objects are associated with a

FileAttributes object that contains information such as owner name, checksum, file size, and
last modified time. This object can be extended to provide more detailed metadata (or data about
data). GridSim supports replication by having two types of File objects: master and replica. A
master data set is an original instance of the file, whereas all other copies of the file are categorized
as replica files. This distinction is introduced to identify the purpose of a file copy. The master
file is usually generated by a user’s program or by a scientific instrument; hence, it should not
automatically be deleted by resources. On the other hand, a replica file can be created and removed
dynamically by a resource based on storage constraints and/or access demands.

3.2. Replica catalog

An RC provides information about a data set and its replicas in a data Grid system. At the very
least, the RC indexes the physical locations of the available data sets and replicas in a data Grid.
However, in actual Grids, tools such as the storage resource broker’s metadata CATalog [22] provide
more complex information including metadata attributes of the data set and its parent collection.
Also, the RC is generally not a single entity as multiple catalogs are generally networked using
different topologies, such as hierarchical, centralized, and superpeers to improve scalability and
fault tolerance.
GridSim provides an RC object that can be configured to be at several levels. For example,

a LocalRC at the level of resources and a RegionalRC at the level of Grids. Currently, two
topologies for networking catalogs have been realized using GridSim: (i) a simple centralized
network for Grids with small number of resources and users and (ii) a hierarchical topology that
models the catalog structure used in large Grids such as the LHCGrid project. Currently, there is
no support for metadata-based queries in GridSim as its objective is to simulate and not to emulate
data Grids.

3.3. Resource

In Grid computing, any hardware or software component such as a cluster, a supercomputer, or a
storage repository is called a resource. Computing resources allow users to execute the required
application, whereas storage resources allow the users to access data sets and store the results of
the computation. In data Grids, computational resources that allow the files transferred for a job to

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:1591–1609
DOI: 10.1002/cpe

A TOOLKIT FOR SIMULATING DATA GRIDS 1597

be stored and accessed for subsequent jobs also function as data resources, thereby fulfilling a dual
role. Therefore, the following issues should be considered while modelling data Grid systems.

• Storage. There can be dedicated storage resources available, such as mass storage systems that
serve a large number of users or a huge collaboration. It is also possible that a computational
resource may be associated with a high-performance mass storage resource. For example, a
cluster locates in the same network as a large disk array, where both resources are accessible
through the same front end node. The media within a storage resource may be disks or tapes,
in which case there are differences in read and write times.

• Resource management. Resources in production Grid testbeds are generally high-performance
computingmachines such as clusters and supercomputers that aremanaged by jobmanagement
systems or batch schedulers such as portable batch system [23]. Such schedulers consist of
queues that have specific allocation policies. The impact of allocation policies through job
waiting times has to be taken into account as well. Along with the computational allocation,
data transfer also has to be scheduled so that the job does not occupy the resource time waiting
for input.

• Replica management. Resolving requests for data sets involves locating the replicas of the
data sets and determining the source from which the data set has to be accessed from. Also, if
the computational resource allows the data to be retained, then a new entry must be created for
the replica and subsequent searches must provide the new location to the requesters as well.
If the replica is deleted, this has to be propagated through the rest of the system. Therefore,
there must be a mechanism for indexing, locating, and managing the replicas available in a
data Grid.

GridSim provides the architecture shown in Figure 3 for resource management in data Grids. A
Grid resource is associated with one or more Storage objects that can each model either a hard
disk-based or a tape-based storage device. The resource has a ReplicaManager that handles
incoming requests for data sets located on the storage elements. In case a new replica is created, it
also registers the replica with the catalog. The replica manager (RM) can be extended to incorporate
different replica retention or deletion policies. A LocalRC object can be optionally associated with
the resource to index available files and handle direct user queries about local files. However, other
resources cannot query this RC object.

Replica
Manager

Allocation
Policy

Local
Replica
Catalogue

Storage

Communication
 to outside

Figure 3. A data resource.

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:1591–1609
DOI: 10.1002/cpe

1598 A. SULISTIO ET AL.

GridSim was initially developed in order to model and simulate computational resources and
therefore provides well-defined abstractions for configuring the resource management on a resource.
Each resource is associated with an AllocationPolicy object that allocates internal nodes to
the user jobs depending on the policy. GridSim currently has two policies, i.e. space shared using
a first come first serve (FCFS) approach with/without advanced reservation [24] and time shared
using a Round Robin approach.
To support data Grid operations, jobs are allowed to specify, as physical locations, the data sets

they require for execution. For each data set, the resource manager generates a transfer request
to the remote storage resource specified in the location. The data transfers can be specified as
stream or block operations. In the latter case, the execution of the job is not carried out until an
event is received that the complete data set has arrived at the resource. The data Grid version also
allows pre-emptive scheduling of data transfers in order to ensure availability of data at the time of
execution.

3.4. User

An application or a broker that schedules jobs onto Grid resources is considered as a user. Such com-
ponents are able to query and request data set transfers, submit jobs, and register for events. Within
GridSim, these are implemented by creating a specific DataGridUser object for a particular
application or scenario.

4. IMPLEMENTING DATA GRID OPERATIONS IN GridSim

The previous section described the components of a data Grid and how they are modelled within
GridSim. This section describes the implementation of some of the common operations in data
Grids in GridSim using the entities described previously. The first operation we present is the
implementation of an RC structure using the hierarchical topology as an example. We use the
hierarchical RC model as a basis for describing other operations such as file addition and deletion.
Note that we have opted to implement the hierarchical RC model in this paper, because it has been
widely studied [3,6,25]. Moreover, this model functions as an interesting test case to demonstrate
the utility of our simulator.

4.1. Implementing the hierarchical RC model

The hierarchical RC model is constructed as a catalog tree, as depicted in Figure 4. In this model,
some information are stored in the root of the tree, and the rest in the leaves. This approach enables
the leaf RCs to process some of the queries from users and resources, thus reducing the load of
the root RC. In GridSim, the TopRegionalRC class acts as a centralized RC or a root RC in a
hierarchical model. In contrast, the RegionalRC class represents a local RC and/or a leaf RC in
a hierarchical model. The common functionalities of an RC is encapsulated in AbstractRC, an
abstract parent class for both TopRegionalRC and RegionalRC.
In our implementation, we follow an approach described in [25] and used by the EU DataGrid

project [20]. In this model, the root RC stores only the mapping between a filename and a list of

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:1591–1609
DOI: 10.1002/cpe

A TOOLKIT FOR SIMULATING DATA GRIDS 1599

TopRegionalRC

User 2

User 1

Resource C

RegionalRC 2RegionalRC 1

Resource A

LocalRC

Resource B Resource D

Figure 4. A hierarchical replica catalog model.

(a)

(b) (c) (d)

Figure 5. An example of a filename mapping in a hierarchical model.

leaf RCs. Each leaf RC in turn stores the mapping between the filename and a list of resources that
store this file. Figure 5 shows an example of how data sets (in this case files named file1, file2, and
file3) are indexed for the hierarchical model in Figure 4.
As GridSim is designed to be a research tool, researchers or analysts wishing to test new ideas

can easily extend the current component and implement other RC structures such as federated or
peer-to-peer or hybrid networks. Creating a new RC model can be done by implementing some

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:1591–1609
DOI: 10.1002/cpe

1600 A. SULISTIO ET AL.

core functionalities, such as

• adding/deleting entries corresponding to a master data set or replica(s) when the latter is
added/deleted;

• getting the location/attribute of a data set; and
• filtering data set queries based on certain attributes.

With the above approach, the RC model along with its structure becomes transparent to users
and resources. Hence, they are just aware of the location of an RC which they can query but not
the type.

4.2. Adding a master file

Figure 6 depicts the states and events for adding a master file to a data Grid in GridSim. It involves
three entities, i.e. the ReplicaManager on the Grid resource in which the file will be stored, the
RegionalRC, which is the leaf RC to which the file must be registered, and the TopRegionalRC
that performs as the root RC for the entire Grid.
The filename is passed by the resource to the TopRegionalRC (or root RC) through all the

nodes in the hierarchy. The root RC creates a unique identifier which is appended to the filename
so that two files with the same name are treated differently. This filename changing procedure
is reflected not only in the TopRegionalRC but also in the RegionalRC (or leaf RC) and
ReplicaManager. Furthermore, a tuple <filenameID, RegionalRC> is saved within the
root RC to serve future user requests. The combination of filename and its unique ID is also
considered as a logical filename (lfn) [25]. This lfn is a key to query the TopRegionalRC and
other regional RCs for other data Grid operations, such as adding a replica or getting location(s) of
a file/data set and its replicas.

U s e r R e p l i c a M a n a g e r R e g i o n a l R C T o p R e g i o n a l R C

s e n d r e s u l t
[s to rage i s fu l l]

c o n t i n u e
[s to rage i s no t fu l l]

C r e a t i n g F i l e
d o / c r e a t e a m a s t e r f i l e

S av i n g f i l e n a m e
d o / s ave a s < f i l e n a m e I D, R e g i o n a l R C >

C h e ck i n g F i l e
en t r y / rece i ve f i l e
d o / c h e ck s t o r a g e

R e n a m i n g f i l e n a m e
d o / r e n a m e t o f i l e n a m e I D

No t i f i ca t i on
en t r y / r ece i ve r esu l t

R e g i s t e r i n g F i l e
do / pu t f i l ename i n to l i s t

C r e a t i n g I D
d o / c r e a t e a u n i q u e I D

A d d i n g F i l e
do / add f i l e

send f i l e

reg i s t e r

f i l e n a m e

reg is te r
f i l e n a m e

s e n d u n i q u e I D

R e n a m i n g f i l e n a m e
d o / r e n a m e i n t o f i l e n a m e I D

S av i n g f i l e n a m e
d o / s ave a s < f i l e n a m e I D, r e s o u r c e >

R e n a m i n g f i l e n a m e
d o / r e n a m e i n t o f i l e n a m e I D

S t a t e E ve n t [c o n d i t i o n]
In i t i a l S ta te F i n a l S t a t e

c o n t i n u e

s e n d

u n i q u e I D

c o n t i n u e

s e n d

resu l t

s e n d

resu l t

Figure 6. A statechart diagram for adding a master file.

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:1591–1609
DOI: 10.1002/cpe

A TOOLKIT FOR SIMULATING DATA GRIDS 1601

4.3. Adding/deleting a replica

The operation for creating a replica of an already existing data set is similar to that of adding a
master file and is shown in Figure 7. This operation is invoked when a user or Grid resource wishes
to explicitly register a copy in the RC structure, i.e. all file copies are not automatically registered
within the catalog. This is to support scenarios where copies of data sets are created on the scratch
disks of computational resources for specific jobs and then deleted.
The ReplicaManager entity in the Grid resource determines whether a file can be retained

based on certain policies; in Figure 7, the policy is whether there is enough storage to retain the
file. In that case, a registration request with the lfn is sent to the nearest RegionalRC (or leaf
RC), which is then transmitted to the TopRegionalRC for the simulated data Grid. It is important
to note that a replica can be registered only when its master file has already been mapped by the
TopRegionalRC. Otherwise, the replica registration would be denied by both TopRegionalRC
and RegionalRC entities.
Deleting a replica works in a similar fashion. The ReplicaManager in the resource sends

a request to deregister the replica to the nearest RegionalRC. If this is the only replica in the
RegionalRC, then the TopRegionalRC is requested to disassociate the leaf RC from the file
(represented by its lfn). If these operations return successfully, the file is deleted from the resource.
Here, it should be mentioned that the ReplicaManager can be extended to consider different

strategies for adding or deleting replicas. One of the possible strategies is that of economy-based
creation of replicas presented by Bell et al. [12], which involves the resource determining whether
to retain or create a replica based on expected profit.

4.4. Querying a file’s attributes

The operation for getting locations of a file in GridSim is summarized in Figure 8. In this figure,
we use two regional RCs as an example. When an lfn does not exist in RegionalRC1, then

U s e r R e p l i c a M a n a g e r R e g i o n a l R C T o p R e g i o n a l R C

s e n d r e s u l t
[s to rage i s fu l l]

c o n t i n u e
[s to rage i s no t fu l l]

C r e a t i n g F i l e
d o / c r e a t e a r e p l i c a

S av i n g f i l e n a m e
d o / s ave a s < l f n , R e g i o n a l R C >

C h e ck i n g F i l e
en t r y / rece i ve f i l e
d o / c h e ck s t o r a g e

No t i f i ca t i on
en t r y / r ece i ve r esu l t

R e g i s t e r i n g F i l e
do / pu t l fn in to l i s t

R e g i s t e r i n g F i l e
d o / c h e ck l f n

A d d i n g F i l e
do / add f i l e

send f i l e reg is te r l f n
reg i s te r

f i l e n a m e

S av i n g f i l e n a m e
d o / s ave a s < l f n , r e s o u r c e >

S t a t e E ve n t [c o n d i t i o n]
In i t i a l S ta te F i n a l S t a t e

s e n d

resu l t

s e n d

resu l t

c o n t i n u e
[a l r e a d y r e g i s t e r e d]

c o n t i n u e
[a l r e a d y r e g i s t e r e d]

s e n d
resu l t

No t i f i ca t i on
en t r y / r ece i ve r esu l t
ex i t / r e lay the resu l t

No t i f i ca t i on
en t r y / r ece i ve r esu l t
ex i t / r e lay the resu l t

s e n d r e s u l t

s e n d
resu l t
[no t r eg i s te red]

Figure 7. A statechart diagram for adding a replica.

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:1591–1609
DOI: 10.1002/cpe

1602 A. SULISTIO ET AL.

U s e r R e g i o n a l R C 1 To p R e g i o n a l R C

s e n d r e s u l t

c o n t i n u e
[fo u n d]

Q u e r y i n g L o c a t i on
do / ask f i l e l oca t i on

C h e ck i n g R e g i s t r a t i o n
en t r y / r ece i ve l f n
d o / c h e ck r e g i s t ra t i o n

No t i f i ca t i on
en t r y / r ece i ve resu l t

S e a r c h i n g F i l e
do / ge t f i l e l oca t i on

s e n d l f n

S e a r c h i n g R C
do / ge t l i s t o f RCs

S t a t e E ve n t [c o n d i t i o n]
In i t i a l S ta te F i n a l S t a t e

s e n d r e s u l t

c o n t i n u e
[fo u n d]

send l i s t

send l f n

[n o t fo u n d]

C h e ck i n g R e g i s t r a t i o n
en t r y / r ece i ve l f n
d o / c h e ck r e g i s t ra t i o n

Q u e r y i n g L o c a t i on
en t r y / r ece i ve RC l i s t
do / ask f i l e l oca t i on

R e g i o n a l R C 2

S e a r c h i n g F i l e
en t r y / r ece i ve l f n
do / ge t f i l e l oca t i on

send r esu l t
 [no t found]

s e n d l f n

Figure 8. A statechart diagram for getting locations of a file.

this RC will contact TopRegionalRC for a list of RC name that maps this lfn. This allows the
RegionalRC1 to request a file location on other RCs, such as RegionalRC2.
The user can also find a list of available files in the data Grid system that match certain criteria,

such as a combination of filename, size, and owner name. This filtering function can be done by
extending a Filter class and implementing its method, which evaluates all FileAttribute
objects listed in the TopRegionalRC.

5. CONSTRUCTING A COMPLEX SIMULATION

In this section, we demonstrate how to construct a data Grid simulation using the building blocks
described in the previous sections. As mentioned earlier, there exist several types of data Grids:
hierarchical, monadic, and federated. Although this paper demonstrates the usefulness of GridSim
for modelling and simulating hierarchical data Grids (with the LHCGrid as an example), GridSim
can be used for dealing with other types of data Grids. For example, Agarwal et al. [11] has
used GridSim to simulate data Grids in the context business Grid efforts within IBM. Another
example is Flahive et al. [26] that use GridSim to simulate the distributed ontology framework
in the semantic Grid environment, which requires many data resources to be located as well as
large-scale processing to take place on the collected data.
We created an experiment based on EU DataGrid TestBed 1 [3]. The network topology of

the testbed is shown in Figure 9. In the LHC experiment, for which the EU DataGrid has been
constructed, most of the data are read only. Therefore, to model a realistic experiment, wemake these
files to be read only. Furthermore, we assume the atomicity of the files, i.e. a file is a non-splittable
unit of information, to simulate the already processed raw data of the LHC experiment.
For experimenting a hierarchical RC model, three regional RC entities are introduced as shown

in Figure 9, i.e. RegionalRC1, RegionalRC2, and RegionalRC3. RegionalRC1 is responsible for
mapping master file locations and communicating with CERN, Lyon, and NIKHEF. RegionalRC2

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:1591–1609
DOI: 10.1002/cpe

A TOOLKIT FOR SIMULATING DATA GRIDS 1603

Imperial College

RAL

Lyon

 NorduGrid

NIKHEF

CERN

 Milano

 Torino

Rome

Padova
Bologna

45Mb/s

45Mb/s

100Mb/s

100Mb/s

155Mb/s

10Gb/s

10Gb/s

10Gb/s
10Gb/s

10Gb/s

155Mb/s

10Gb/s

155Mb/s

2.5Gb/s

2.5Gb/s 2.5Gb/s

622Mb/s

155Mb/s

2.5Gb/s

2.5Gb/s

1Gb/s

1Gb/s

2.5Gb/s

RegionalRC2

3CRlanoigeR1CRlanoigeR

Figure 9. The simulated topology of EU DataGrid TestBed 1.

is responsible for NorduGrid, RAL, and Imperial College, and RegionalRC3 is responsible for
Padova, Bologna, Rome, Torino, and Milano. Finally, TopRC oversees all three regional RCs.
In this experiment, we are trying to look at:

• how a hierarchical RC model can reduce the load of a single (centralized) RC;
• how data replication improves the execution time of data-intensive jobs; and
• how existing GridSim features, such as job allocation policy and the simulation of realistic
workloads, can be utilized to make this experiment more comprehensive.

5.1. Simulation set-up

Resources: Table II summarizes all the resource relevant information. In GridSim, total processing
capability of a resource’s CPU or CPU rating is modelled in the form of million instructions per
second as devised by Standard Performance Evaluation Corporation [27].
The resource settings were obtained from the current characteristics of the real LHC testbed [7].

We took the data about the resources and scaled them down. The computing capacities were scaled
down by 10 and the storage capacities by 20. The scaling was done primarily for two reasons:

• real storage capacities are very big; hence, these resources could store all replicas of files that
the jobs require. Since we are trying to demonstrate how a replication strategy works, which
deletes some files to make space for new ones, we made the storage capacities smaller;

• the simulation of the real computing capacities is not possible; because of memory limitation
of the computer we ran the simulation on. The complete simulation would require more than
2GB of memory.

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:1591–1609
DOI: 10.1002/cpe

1604 A. SULISTIO ET AL.

Table II. Resource specifications.

Resource name (location) Storage (TB) # Nodes CPU rating Policy No. of users

RAL (U.K.) 2.75 41 49 000 Space shared 24
Imperial College (U.K.) 1.80 52 62 000 Space shared 32
NorduGrid (Norway) 1.00 17 20 000 Space shared 8
NIKHEF (Netherlands) 0.50 18 21 000 Space shared 16
Lyon (France) 1.35 12 14 000 Space shared 24
CERN (Switzerland) 2.50 59 70 000 Space shared 48
Milano (Italy) 0.35 5 7000 Space shared 8
Torino (Italy) 0.10 2 3000 Time shared 4
Rome (Italy) 0.25 5 6000 Space shared 8
Padova (Italy) 0.05 1 1000 Time shared 4
Bologna (Italy) 5.00 67 80 000 Space shared 24

Some parameters are identical for all network links, i.e. the maximum transmission unit is 1500
bytes and the latency of links is 10ms.
Users: We simulated 200 users in total, where each resource is assigned a certain number of

users as depicted in Table II. The users arrive with a Poisson distribution; four random users start
to submit their jobs approximately every 5 min. Each user has between 20 and 40 jobs.
Files: For this experiment we defined 2000 files. The average file size is 1GB and the file size

follows a power-law (Pareto) distribution, which is reported to model a realistic file size distribution
[28]. At the beginning of the experiment, all master files are placed on the CERN storage. Then
copies of the files will be replicated among resources as required during run-time.
Replication strategy: In this simulation, each RM of a resource uses the same strategy, i.e. to

delete the least-frequently used replicas when the storage limit capacity for storing new ones is full.
However, master files on CERN cannot be deleted or modified during the experiment. This is due
to insufficient storage size in other resources to store all of these replicas.
Data-intensive jobs: For this experiment, we created 500 types of data-intensive jobs. Each job

requires between 2 and 9 files to be executed. To model a realistic access, the required files are
chosen with another power-law distribution, a Zipf-like distribution [29]. This means that the i th
most popular file is chosen with a probability of

1

i�

in our case � = 0.6. The execution size for each job is approximately 84 000 kMI ± 30%, which is
around 20min if it is run on the CERN resource.
GridSim already has the ability to schedule compute-intensive jobs, which are represented by

a Gridlet class. Therefore, we extended this class and implemented a DataGridlet class
to represent a data-intensive job. As a result, each data-intensive job has a certain execution size
(expressed in million instructions—MI) and requires a list of files that are needed for execution.
This execution size (in MI) will be used by a resource to determine how much simulation time is
required.
Workload simulation: Grid resources are shared by other (i.e. non-grid) types of application and

jobs. To include this factor into our simulation, we added a simulation of a realistic workload on

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:1591–1609
DOI: 10.1002/cpe

A TOOLKIT FOR SIMULATING DATA GRIDS 1605

a subset of resources. GridSim makes it possible to simulate realistic workloads. Hence, we took
three workload logs from the parallel workload archive [30] of the DAS2 5-Cluster Grid in this
experiment. Since the workload logs are several months long, we took only one day from each log
and simulated it on CERN, RAL, and Bologna.

5.2. Simulation results

RC model test: In this test, we compare how well a centralized RC model performs in comparison
with a hierarchical one as used in the LHC experiment. We use the same configuration as mentioned
earlier with the RC model being the only difference.
Figure 10 shows the number of requests that have to be served by each RC entity. We can see that

there is a significant reduction in requests (around 60%) when comparing TopRC with CentralRC
from a centralized model. Therefore, the hierarchical model decreases the load of the centralized
RC and it is a good solution for Grids with many queries. However, further improvements can be
made, such as periodical updation and cache replica locations from other regional RCs, or increase
the number of regional RCs in proportion to the number of resources and users.
Execution time test: The average execution time for jobs on each resource is depicted in Figure 11.

Because of the time-shared allocation policy, low bandwidth, and low CPU power, Padova and
Torino have a substantially larger average execution time (80 and 15 h, respectively) and are not
given in this figure.
As the simulated jobs are data intensive and they also require a lot of computing power, many

parameters influence the speed of job execution. We can see that imperial has the fastest job
execution, since it has a lot of computing power and also a large bandwidth to CERN where it
obtains the needed files. The most surprising result is that CERN has a very high computing power
and all the data available, but the average execution time is very high. The reason for this is that
CERN is running many compute-intensive jobs (defined by the realistic workload); hence, the jobs
have to wait for the execution.

Figure 10. Centralized vs hierarchical RC model.

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:1591–1609
DOI: 10.1002/cpe

1606 A. SULISTIO ET AL.

Figure 11. Average execution time.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200 250 300 350 400

D
at

a
A

va
ila

bi
lit

y
(s

ec
 /

M
B

)

Time (minutes)

Lyon
NIKHEF
Bologna

Figure 12. Average availability in time for three resources.

Data availability test: To demonstrate how the availability of data can be monitored on each
resource we measured how much time a job requires to obtain a unit of data when obtaining
the needed files. This measure will tell us how ‘close’ the resource is to the required data. More
precisely, the availability of data for job i on resource j is computed as

availi j = ti j
di

where di is the amount of data required by job i (e.g. in MB) and ti j is the time needed for job i
to obtain all data on the resource j (e.g. in seconds).

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:1591–1609
DOI: 10.1002/cpe

A TOOLKIT FOR SIMULATING DATA GRIDS 1607

The ‘quality’ of a resource to execute data-intensive jobs can be defined as the average availability
over all jobs that were executed on the resource. This can be expressed as

avgAvail j =
∑

i∈Jobs j availi j
|Jobs j |

where Jobs j is the set of jobs executed on resource j .
However, because of data replication and different conditions of the network, data availability

changes over time. Figure 12 shows the availability change during the simulation on three different
resources: Lyon, NIKHEF, and Bologna. Because the behaviour is similar on other resources we
omitted them from the figure. In the first few minutes we have no information about the data
availability, since it is calculated when a job retrieves all the required files. The availability gets
initially worse on some nodes, since the jobs that finish first have obviously a better access to
data. After this increase, the availability starts to improve significantly because of the replication
strategy.

6. CONCLUSION AND FURTHER WORK

In this work, we present a data Grid simulation infrastructure as an extension to GridSim, a well-
known computational Grid simulator. With the addition of this extension, GridSim has the ability to
handle core data Grid functionalities, such as replication of data to several sites, query for location
of the replicated data, access to the replicated data, and make complex queries about data attributes.
To give a better insight into the new features, we describe the entities and their basic functions in
detail.
Integrating data Grid functionalities into GridSim provides a rich set of features and a wide

range of possibilities for users to explore. We demonstrate this by constructing a complex simulation
scenario based on the LHCGrid project, such as the simulation of data-intensive jobs with compute-
intensive workloads and the evaluation of demand-driven replication strategies. We also show
how GridSim is able to simulate a comprehensive data Grid platform. The conducted experiment
has shown how a hierarchical model for replica catalog (RC) provides a better scalability than a
centralized one.
In addition, we tested the average execution times on different resources and the data availability

which improved substantially because of a simple data replication strategy. The results shown in
these experiments are not very surprising, but the described simulation was used as an example
of different functionalities of the simulator. We believe that this work can help researchers make
important findings and help resolve problems arising in data Grids.
In the future, we are planning to incorporate new functionalities of data Grids, such as reser-

vation of storage to store future data requests, and automatic synchronization of data sets among
resources. We are also intending to add various RC models into the framework. By working with
user communities, we will develop some more usage models illustrating applicability of GridSim
for simulating various classes of data application scenarios.
Software availability: The latest GridSim toolkit with source code and examples can be down-

loaded from http://www.gridbus.org/gridsim/.

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:1591–1609
DOI: 10.1002/cpe

1608 A. SULISTIO ET AL.

ACKNOWLEDGEMENTS

This work is partially supported by research grants from the Australian Research Council (ARC) and Australian
Department of Education, Science and Training (DEST). We would like to thank Chee Shin Yeo, Marco Netto,
and anonymous reviewers for their comments on this paper.

REFERENCES

1. Foster I, Kesselman C. The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann Publishers: San
Francisco, CA, 1999.

2. Chervenak A, Foster I, Kesselman C, Salisbury C, Tuecke S. The data grid: Towards an architecture for the distributed
management and analysis of large scientific datasets. Journal of Network and Computer Applications 2001; 23:187–200.

3. Hoschek W, Janez F, Samar A, Stockinger H, Stockinger K. Data management in an international data Grid project.
Proceedings of the 1st International Workshop on Grid Computing (GRID), Bangalore, India, 17 December 2000.

4. Jacob JC, Katz DS, Prince T, Berriman GB, Good JC, Laity AC, Deelman E, Singh G, Su M-H. The Montage
architecture for grid-enabled science processing of large, distributed datasets. Proceedings of NASA’s Earth Science
Technology Conference, Palo Alto, CA, Jet Propulsion Laboratory, National Aeronautics and Space Administration,
Pasadena, CA, June 2004.

5. Mineter M, Jarvis C, Dowers S. From stand-alone programs towards grid-aware services and components: A case study
in agricultural modelling with interpolated climate data. Environmental Modelling & Software 2003; 18(4):397–391.

6. Venugopal S, Buyya R, Ramamohanarao K. A taxonomy of data Grids for distributed data sharing, management and
processing. ACM Computing Surveys 2006; 38(1):1–53.

7. LCG computing fabric. http://lcg-computing-fabric.web.cern.ch [5 October 2007].
8. Biogrid Project. http://www.biogrid.jp/e/project/index.html [5 October 2007].
9. International Virtual Observatory Alliance. http://www.ivoa.net [5 October 2007].
10. Avaki EII—Enterprise Data Integration Software. http://www.sybase.com/products/allproductsa-z/avakieii [5 October

2007].
11. Agarwal V, Dasgupta G, Dasgupta K, Purohit A, Viswanathan B. DECO: Data replication and execution co-scheduling

for utility grids. Proceedings of International Conference on Service Oriented Computing (ICSOC), Chicago, U.S.A.,
4–7 December 2006.

12. Bell W, Cameron D, Capozza L, Millar P, Stockinger K, Zini F. Simulation of dynamic Grid replication strategies in
OptorSim. Proceedings of the 3rd International Workshop on Grid Computing (GRID), Baltimore, U.S.A. IEEE CS
Press: Los Alamitos, CA, U.S.A., 18 November 2002.

13. Chic Sim—The Chicago Grid Simulator. http://people.cs.uchicago.edu/∼krangana/ChicSim.html [5 October 2007].
14. Mihai Dobre C, Stratan C. Monarc simulation framework. Proceedings of the RoEduNet International Conference,

Timisoara, Romania, 27–28 May 2004.
15. Buyya R, Murshed M. GridSim: A toolkit for the modeling and simulation of distributed resource management and

scheduling for grid computing. Concurrency and Computation: Practice and Experience 2002; 14(13–15):1175–1220.
16. Sulistio A, Poduvaly G, Buyya R, Tham C. Constructing a grid simulation with differentiated network service using

GridSim. Proceedings of the 6th International Conference on Internet Computing, Las Vegas, U.S.A., 27–30 June 2005.
17. Legrand A, Marchal L, Casanova H. Scheduling distributed applications: The SimGrid simulation framework. Proceedings

of the 3rd International Symposium on Cluster Computing and the Grid, Tokyo, Japan, 12–15 May 2003.
18. Song HJ, Liu X, Jakobsen D, Bhagwan R, Zhang X, Taura K, Chien A. The MicroGrid: A scientific tool for modeling

computational grids. Proceedings of IEEE Supercomputing Conference, Dallas, U.S.A., 4–10 November 2000.
19. Fujiwara K, Casanova H. Speed and accuracy of network simulation in the SimGrid framework. Proceedings of the 1st

International Workshop on Network Simulation Tools (NSTools), Nantes, France, October 2007.
20. The European DataGrid project homepage. http://eu-datagrid.web.cern.ch/eu-datagrid [5 October 2007].
21. Simatos C. Making Simjava count. MSc. Project Report, The University of Edinburgh, 12 September 2002.
22. Baru C, Moore R, Rajasekar A, Wan M. The SDSC storage resource broker. Proceedings of CASCON’98, Toronto,

Canada, 30 November–3 December 1998. IBM Press: Indiana, U.S.A.
23. Bayucan A, Henderson R, Lesiak C, Mann B, Proett T, Tweten D. Portable batch system: External reference specification.

Technical Report, MRJ Technology Solutions, November 1999.
24. Sulistio A, Buyya R. A grid simulation infrastructure supporting advance reservation. Proceedings of the 16th International

Conference on Parallel and Distributed Computing and Systems, Cambridge, U.S.A., 9–11 November 2004.
25. Stockinger H. Database replication in world-wide distributed data Grids. PhD Thesis, Fakultät für

Wirtschaftswissenschaften und Informatik, Universität Wien, 2001.

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:1591–1609
DOI: 10.1002/cpe

A TOOLKIT FOR SIMULATING DATA GRIDS 1609

26. Flahive A, Wenny Rahayu J, Apduhan BO, Taniar D. Simulating the distributed ontology framework in the semantic
Grid environment with GridSim. Proceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA), Las Vegas, U.S.A., 26–29 June 2006.

27. Standard Performance Evaluation Corporation (SPEC). http://www.spec.org [5 October 2007].
28. Gong W, Liu Y, Misra V, Towsley D. On the tails of web file size distributions. Proceedings of the 39th Allerton

Conference on Communication, Control, and Computing, Illinois, U.S.A., 3–5 October 2001.
29. Breslau L, Cao P, Fan L, Phillips G, Shenker S. Web caching and zipf-like distributions: Evidence and implications.

INFOCOM (1), New York, U.S.A., 21–25 March 1999; 126–134.
30. Parallel workload archive. http://www.cs.huji.ac.il/labs/parallel/workload [5 October 2007].

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:1591–1609
DOI: 10.1002/cpe

