A Heuristic for Mapping Virtual Machines and Links in Emulation Testbeds

Rodrigo N. Calheiros'?, Rajkumar Buyya?, César A. F. De Rose!
'Pontifical Catholic University of Rio Grande do Sul
Porto Alegre, Brazil
2Grid Computing and Distributed Systems (GRIDS) Laboratory
Department of Computer Science and Software Engineering
The University of Melbourne, Australia

rodrigo.calheiros @pucrs.br, raj@csse.unimelb.edu.au, cesar.derose @pucrs.br

Abstract

Distributed system emulators provide a paramount plat-
form for testing of network protocols and distributed appli-
cations in clusters and networks of workstations. However,
to allow testers to benefit from these systems, it is necessary
an efficient and automatic mapping of hundreds, or even
thousands, of virtual nodes to physical hosts—and the map-
ping of the virtual links between guests to physical paths in
the physical environment. In this paper we present a heuris-
tic to map both virtual machines to hosts and virtual links
between virtual machines to paths in the real system. We
define the problem we are addressing, present the solution
for it and evaluate it in different usage scenarios.

1. Introduction

Testing of applications, middleware, and protocols for
platforms such as grid computing [7], P2P computing [10],
utility computing [12], and cloud computing [3] is a very
challenging task. That is because the hardness in getting
access to third-parties resources in order to enforce specific
environment conditions and to enable test replication. An-
other problem is to enforce specific network conditions dur-
ing the test. Because tests can run for a long time, variation
in network conditions is unavoidable in real environments,
and it is beyond the control of the tester.

To overcome such limitations, several distributed system
emulators built upon virtualization technology were pro-
posed [1,4-6, 11]. These projects aim at delivering a scal-
able and controlled testbed where a tester can evaluate the
behavior of the actual system. Because emulators allow
testers to describe the exact configuration and conditions
of the emulated environment, it is also possible not only to

reuse a given emulated environment but also to reproduce
tests. Moreover, these platforms benefit from virtualization
technology, which provides an easy way to multiplex emu-
lation nodes.

One aspect that must be considered in virtualization-
based emulators is the placement of virtual machines in the
hosts, because it limits the scalability of the environment
due to fragmentation problems. For example, even if the
overall amount of free memory in the testbed allows more
virtual machines to be deployed in the environment, it is
possible that none of the hosts has enough memory to sup-
port a new virtual machine. The same may happen to other
host resources (e.g., CPU, storage).

Nevertheless, finding a mapping of virtual machines to
hosts solves part of the problem of mapping a virtual en-
vironment to physical environments. Another problem is
finding, for each link between two virtual machines, a path
in the physical infrastructure going from the host that runs
one of the virtual machines to the host running the other
one. Depending on the cluster topology and hosts’ config-
uration, the hosts where the virtual machines are running
may not be directly connected, hence the path passes by
other hosts. Furthermore, as in the case of mapping virtual
machines, network resource constraints must be considered
during the map of the links.

In this paper, we present a heuristic to map virtual ma-
chines and virtual links to physical machines and network
paths in the real system. The heuristic goal is to optimize
the utilization of the physical environment by balancing the
load among physical machines that may be heterogeneous,
i.e., that may have different amounts of memory, storage,
and CPU power.

The work presented in this paper is part of a project
aiming at developing a fully-automated virtualization-based
emulator [4] for distributed systems. The emulator is able



to build the virtual system and trigger the applications. The
automatic mapping of virtual machines and links is an im-
portant step of the process of building the emulated envi-
ronment.

2. Related Work

There are several projects aiming at using virtualization
technology to develop distributed systems emulators. How-
ever, the approach used to map virtual machines to hosts, if
any, is different on each one.

In both V-DS [11] and TestGrid [6] systems, the mapping
is performed manually by the tester. The problem of manu-
ally mapping is that it becomes a laborious and error-prone
work when the number of virtual machines to be mapped
reaches hundreds or thousands.

V-eM [1] handles the problem of mapping the virtual ma-
chines to the hosts considering that the hosts are connected
by a switch and that every virtual link corresponds to one
real link between network interfaces. Although switches are
widely used for connection of cluster nodes, there are other
topologies that V-eM cannot handle, for example, clusters
with torus or ring topology. Finally, this approach does not
allow the mapping of virtual links between guests whose
hosts are not connected in the same switch.

NEPTUNE [5] considers the same topology than V-DS.
However, no specific solution is proposed for the mapping
problem.

Differently from all these systems, our approach can
manage arbitrary cluster networks. Consequently, it can be
applied in any one of the previous approaches to improve
the mapping.

The mapping problem addressed in this paper has sim-
ilarities with problems found in other contexts. Generic
Adaptation Problem in Virtual Execution Environments
(GAPVEE) [17] consists in finding a mapping of virtual ma-
chines to hosts and the mapping of virtual links to paths in
order to emulate a local area network in a wide area net-
work, while in our work we address the opposite problem,
that is, emulating a wide area network in a local area net-
work. Moreover, in GAPVEE formulation there is a valid
initial state where the solution can start from. This happens
because in GAPVEE, the goal is to find a new mapping that
improves a real application throughput. In our formulation,
on the other hand, the goal is to find a mapping starting
from a state where there are no virtual machines mapped.
Furthermore, the objective functions of both approaches are
different. Nevertheless, GAPVEE provided good insights
on how the mapping problem could be solved. For exam-
ple, as the mapping problem proposed here has similarities
with GAPVEE, and the last is shown to be NP-Hard, we
decided to look for a heuristic solution.

Other problems related to the one presented in this pa-
per are the Network testbed mapping problem [13] and the
problem defined by Liu et al. [9]. In the first approach node
mapping is performed considering that each machine can
receive a number of virtual nodes determined by testers and
no consideration is made about consumption of resources
(e.g., CPU, memory, and storage) by the virtual nodes. In
the second approach each host receives only one machine,
and the resource constraints are considered during the map-
ping. These works do not consider that resources of the host
could be allocated according to the requirements of each
virtual node because these solutions were developed before
modern virtual machine monitors become widely spread.
Besides, both solutions have restrictions in the topology of
the real environment they can map, what limits the applica-
tion of these approaches.

Finally, Singh et al. [14] applied a heuristic to map vir-
tual machines and virtual storage systems in data centers.
However, their solution, called VectorDot, was designed to
work in a very restricted environment, not in general envi-
ronment as was our approach.

3. Problem Description

In this section, we define the problem we are addressing
in this paper. The problem consists in finding both a map
of virtual machines (guests) to physical machines (hosts)
and a map of virtual links between guests to paths among
hosts. Description of actual infrastructures that support our
approach is presented in Section 3.1, while a formal defini-
tion of the problem is presented in Section 3.2.

3.1. Target Environment

The environment we are considering in this work is com-
posed of a cluster of workstations where each node runs a
virtual machine monitor (VMM). This cluster may be ei-
ther homogeneous or heterogeneous regarding its configu-
ration, e.g., the CPU speed and type of each node, amount
of RAM memory and so on. The only requirement regard-
ing the configuration of cluster nodes is that they must run
the same version of a VMM.

On the top of this real or physical environment, a virtual
environment emulating a distributed system is built. The
virtual distributed system is composed of a set of virtual
nodes (whose parameters are defined by the tester) and a
set of virtual network connections among them. Each vir-
tual node in the virtual distributed system corresponds to a
virtual machine (guest) running in a cluster node (host).

In some cases, the virtual network may have links be-
tween guests whose hosts are not directly connected. For
example, if the cluster is linked by a ring network, two non-
adjacent hosts are not directly connected, although the vir-



tual machines on them may have a virtual connection. Thus,
a virtual link may be composed of more than one physical
link.

During the mapping process, it is important to guarantee
that hosts have enough resources to support all the virtual
machines mapped to them. It is also important to consider
that the VMM uses host’s resources. Consequently, for each
different resource (CPU, memory, storage), the amount of it
used by the VMM is deducted from that resource availabil-
ity prior the mapping.

3.2. Definitions

A cluster of workstations is a graph ¢ = (C, E..), where
C' is a set of n hosts and E. = {(s;,d;)|s;,d; € C} is the
set of links between hosts.

The host’s capacities are defined by functions proc :
C — R, mem : C — N, and stor : C — R that describe
the processing capacity, amount of memory, and storage ca-
pacity, respectively.

The link’s capacity is defined by functions bw : £, — R
and lat : £, — R that describe link’s bandwidth and la-
tency. For all ¢; € C, bw((¢;,¢;)) = oo and lat((c;, ¢;)) =
0. It means that virtual machines running in the same host
have as much bandwidth as they require to communicate,
and the latency of this communication is null.

A virtual environment is a graph v = (V, E,), where V
is a set of m guests and £, = {(vs;,vd;)|vs;,vd; € V'}is
the set of virtual links between guests.

The guests’ capacities are defined by functions vproc :
V — R, vmem : V — N, and vstor : V — R that
describe the processing capacity, amount of memory, and
storage capacity, respectively.

The virtual link’s capacities are defined by functions
vbw : E, — R and vlat : E, — R that describe the
bandwidth and the latency respectively.

The mapping problem consists in finding, for each ¢; €
C aset G; C V where the amount of resources required
by all the guests mapped to a host does not exceed the re-
sources of the given host. We are not considering CPU as a
constraint of our problem. Instead, CPU usage is used as the
variable to be optimized. Moreover, each virtual machine is
mapped only once:

ﬂGi:(Z)andUGi:V (1)

mem(c;) > Z vmem(g),Ve; € C ()
Sen

stor(c;) > Z vstor(g),Ve; € C 3)
g€eG;

For each pair (vsj,vd;) € E, a sequence P; =
((s1,d1), (s2,d2), ..., (sp,dp)), (si,d;) € E. must be
found, in such a way that:

51 =¢lusj € Gy @)

dp = Ci|1)dj € Gl (5)
Sk de_l,kZQ,...p (6)
for any (s;,d;), (Sm, dm) € Pj, s # sm and d; # d,,
(7
vlat((vsj,vd;)) > Z lat((sk, dk)), V(vs;,vd;) € Ey
(sk,di) EP;
(®)

bw((sivdi)) > >

Jl(si,di)EP;

vbw((vsj,vd;)),V(si,di) € Ec (9)

Therefore, our solution grants that a virtual link is
mapped to a sequence of real links, where: (i) the first
node in the sequence is the host where the origin in the
virtual link is mapped, (ii) the last host in the sequence is
the host where the destination in the virtual link is mapped,
(iii) there are no loops in the sequence P;, and (iv) there
are enough network resources to comply with the tester re-
quirements.

Because we consider that the entire cluster is available
for a single tester per time, it is desirable that the execution
of the experiment takes the minimum time possible. More-
over, it is undesirable that a host has a high load, because
it decreases the performance of the virtual machines run-
ning on it, delaying the experiment. The objective function
we apply tries to balance the utilization of CPU on each
host, considering that it can be applied in a heterogeneous
environment, where different hosts may have different pro-
cessing powers. Thus, instead of considering the amount
of virtual machines in each host as a load balance metric,
we use the amount of CPU available on each host, after the
mapping, as the load balance metric. The objective func-
tion then aims at minimizing the standard deviation of the
residual CPU in each host.

n N _ e 2
minimize (\/Zi_l(rproc(cl) rpToc) ) where (10)

n
rproc(c;) = proc(c;) — Z vproc(g) (11)
9€G;

> iy rproc(ci)
n

(rproc) = (12)

In other words, the objective functions tries to assure that
there is load balance among hosts, considering resources
and network constraints.

4. Proposed Solution

The proposed heuristic solution, dubbed Hosting-
Migration-Networking heuristic (HMN), consists in the se-
quential execution of three stages. Each stage is detailed
next.



4.1. Hosting

In the first HMN stage, Hosting, a preliminary assign-
ment of guests to hosts is found. In this initial assignment,
no consideration is made about load balancing (which is
considered in the second stage) or paths (performed in the
third stage). Assignment is conduced in such a way that,
wherever it is possible, guests with high bandwidth link be-
tween them are placed in the same host. It is done in order
to reduce the use of physical links, which are one environ-
ment constraint. The assignment starts from guests whose
links have high-bandwidth. By being mapped first, we in-
crease the chance that these guests are assigned to the same
host.

Initially, a list of hosts ¢; € C in descending order of
cpu(c;) and a list of virtual links (vs;,vd;) € E, in de-
scending order of vbw((vs;, vd;)) are created. Then, start-
ing from the first element of the links list, hosts are assigned
for the guests in the link in the following way:

If both guests vs; and vd; were already mapped, the next
element in the list is considered. If neither vs; nor vd; was
mapped, the first host in the hosts list is chosen to host both
guests. If they do not fit in the host, the most CPU-intensive
guest is assigned to the first host in the list able to receive
the guest and the second guest is assigned to the next host
which the guest fits in. In both cases resources and CPU
availability of the chosen hosts are updated to reflect the
assignment, and the host list is sorted again considering the
new CPU availabilities.

If one of the guests was already assigned, the unassigned
guest is assigned to the same host where the other guest was
assigned. If such host does not fit the guest, it is assigned
to the first host in the host list able to receive it. After the
assignment, resources and CPU availability of the host are
updated, and the list is sorted again considering the new
CPU availabilities.

If in some moment no host supports an unassigned guest,
the heuristic fails. If the Hosting stage succeeds, the heuris-
tic advances to its second stage, namely Migration.

4.2. Migration

The goal of this stage is to increase the load balance in
the hosts, through changes in the guests initial assignment.
Wherever it is possible, guests initially assigned to high-
loaded hosts are reassigned to low-loaded ones. The load-
balance factor (Equation 10) of the environment is used to
determine the environment degree of imbalance.

At each iteration, the most loaded host is selected as the
origin of the migration. The guest chosen to migrate is the
one with the smallest sum of bandwidth of links to another
guests in the same host, in order to minimize utilization of
physical links.

Then, starting from the least-loaded host, the load-
balance factor if the migration had just happened is calcu-
lated. If this value is smaller than the current load balance
factor, and the chosen guest fits in the new host, the reas-
signment is performed. Otherwise, the next least loaded
host is considered. The process is repeated until a reassign-
ment happen or all the hosts are tested.

The whole process is repeated while the load balance
factor improves. When no further improvements is possi-
ble by migrating a guest from the highest loaded host, the
heuristic advances to its last stage—Networking.

4.3. Networking

In this stage, the goal is to find, for each virtual link,
a path among real links. The path is built considering the
shortest path, constrained by the latency value. The met-
ric used to define the shortest path is the bottleneck band-
width [16]. The rationale behind the choice of this metric
is to keep the links with the largest amount of bandwidth
available to map the rest of the links.

Initially, a list of virtual links (vs;,vd;) € FE,, sorted
in descending order of vbw((vs;,vd;)) is built. Starting
from the first element of the list, a path for the chosen
link is built with the modified 1-constrained A*Prune al-
gorithm [8] shown in Algorithm 1.

A*Prune is an algorithm used to QoS routing in net-
works subject to technical constraints [15]. In our heuris-
tic, A*Prune has been modified to select the path with the
greatest bottleneck bandwidth. As distance metric for prun-
ing inadmissible paths, we used the accumulated latency in
the Dijkstra path between a given host and the link desti-
nation. During the pruning process, links whose available
bandwidth are smaller than the required bandwidth are also
pruned.

If in some moment a path for a virtual link cannot be
found, the heuristic fails. When a path is found for each
link in the list, this stage, and the HMN heuristic, finishes.

5. Evaluation

The HMN heuristic was evaluated using simulation. The
CloudSim [2] simulation framework was used in the tests.
The HMN heuristic was compared with a mapping algo-
rithm that randomly tries to map the guests to hosts and for
each link in F, applies a depth-first search algorithm to find
a path connecting the hosts of vs; and vd;. The random al-
gorithm fails if it cannot find a valid mapping after 100000
tries.

To allow evaluation of the effect in the mapping of the
different stages of HMN heuristic, specially the hosting
stage and networking stage, two other heuristics were used
in the tests: in the first one, the random algorithm has been



Algorithm 1: Modified 1-constrained A*Prune.

Data: origin, destination, bandwidth, latency

Result: a path from origin to destination respecting
bandwidth and latency constraints

for ¢; € C'do

ar[c;] < length of the Dijkstra path associated to

latency from c; to destination;

set < (origin,o0) (set of feasible paths and their

bottleneck bandwidths);

while set # () do
bestPath «— path with the greatest bottleneck

bandwidth, removed from set;
bbw « bottleneck bandwidth of bestPath;
d < last element of bestPath;
if d=destination then
| return bestPath;
end
for all hosts h connected to d do

if i & bestPath then
if bw((d,h))> bandwidth and
lat((d,h))+ar[h]< latency then
set «— set U (bestPath U
h,min(bw((d, h)), bbw));
end
end

end

end
end

used to map guests to hosts and the modified A*Prune has
been used to map the link. The other heuristic used in the
test applied the hosting algorithm to map guests to hosts and
a depth-first search algorithm to map virtual links to paths.
Evaluation of these two mixed strategies allowed us to eval-
uate effectiveness of each stage of the HMN algorithm in
the mapping process. For each heuristic, we collected the
time to run the experiment, the time to perform the map-
ping, and the value of the objective function for the given
mapping, if a valid mapping was found.

Regarding the workloads, two different use cases were
considered: testing of high-level application and testing of
low-level applications. The first case encompasses testing
of applications such as grid computing applications, cloud
computing middleware, and other cases where the applica-
tion runs in a system containing the operating system, the
application, libraries, and supporting software for applica-
tions (e.g., a database management system, a Java virtual
machine and so on), which demand large amount of mem-
ory and storage. This scenario resembles emulation experi-
ments like the ones presented in our previous work [4].

The second case considers an environment where the ob-
jects of tests are, for example P2P protocols. In these tests,

there is no need for a virtual machine running several appli-
cations demanding many resources. Instead, smaller VMs
with only the basic software can be used. Thus, in these
tests the virtual machines require less memory and stor-
age. This scenario was based in emulation experiments pre-
sented by Quétier et al. [11].

5.1. Experiment setup

Table 1 summarizes the experiment setup. The physical
environment is composed of two different cluster topolo-
gies. In the first one, a 2-D torus topology was used. The
second cluster topology was a switched topology, in which
hosts were connected to cascade 64-port switches. In both
cases, connections between hosts (or connections between
a host and a switch) have 1GB of bandwidth and 5ms of
latency.

In each test, the cluster topology has been built with the
same set of hosts. To represent heterogeneity in the cluster,
resources of each of the 40 hosts in the cluster were ran-
domly generated. Host memory varied uniformly between
1GB and 3GB. Storage varied between 1TB and 3TB and
CPU capacity between 1000MIPS and 3000MIPS.

The virtual environment configuration was created by
a random generator that receives as input the number of
guests and network density and generates an output by cre-
ating the links between guests and assigning a given amount
of resources to each one. Number of resources were gener-
ated randomly, based in a normal distribution.

In the high-level experiment workload, the virtual net-
works were created in such a way that the ratio of guests
per host was up to 10:1. Memory of each guest varied uni-
formly between 128MB and 256MB. Storage of each guest
was uniformly distributed between 100GB and 200GB. The
MIPS required by each guest varied uniformly between 50
and 100 MIPS. Links between guests had bandwidth de-
fined randomly, with bandwidth values between 0.5Mbps
and 1Mbps and latency between 30ms and 60ms.

In the low-level experiment workload, the ratio of guests
per host was between 20:1 and 50:1. Memory of each
guest varied uniformly between 19MB and 38MB. Stor-
age of each guest was uniformly distributed between 19GB
and 38GB. The MIPS required by each guest has been kept
varying uniformly between 19 and 38 MIPS. The links be-
tween guests had bandwidth defined randomly, with values
between 87kbps and 175kbps and latency between 30ms
and 60ms.

In both workloads, links between guests were randomly
set. The number of links created was determined by the
graph density, which was a input parameter to the graph
generator. The algorithm used to generate the graph topol-
ogy guarantees that the output graph is connected.



Table 1. Summary of simulation setup.

Physical environment Virtual environment
Low-level workload | High-level workload

topology 2-D Torus, Switched graph, density 0.01 | graph, density 0.015-0.025
bandwidth | 1Gbps 87kbps—175kbps 0.5Mbps—1Mbps
latency Sms 30ms-60ms 30ms—60ms
nodes 40 800-2000 100-400
memory 1GB-3GB 19MB-38MB 128MB-256MB
storage 1TB-3TB 19GB-38GB 100GB-200GB
CPU 1000MIPS-3000MIPS | 19MIPS-38MIPS 50MIPS-100MIPS

5.2. Results

Each workload has been tested in both clusters. The ex-
periment consisted of execution of each workload with dif-
ferent ratios VM/host repeated 30 times, with the average
of the simulation output being used in the result analysis.

Results are presented in Table 2 and Table 3 respectively
for objective function and simulation time. In the tables,
each column represents a different heuristic: HMN, Ran-
dom (R), Random with A*Prune (RA) and Hosting with
Search (HS). As each scenario has been mapped in two
clusters, the results for both clusters are presented in the
same line. Table 2 also presents the number of times each
heuristic could not find a valid mapping for a specific input.
As each scenario in each workload has been simulated 30
times, in the total 480 simulations for each cluster for each
heuristic were run.

Each row represents a scenario, and it is described both
by the ratio between guests and host (i.e., 10:1 means that
the virtual environment contained 10 times more machines
than the real environment), and by the virtual environment
graph density (i.e., 0.02 means a graph density of 2%). As
described previously, for ratios guests/host up to 10:1 we
used the high-level experiment workload, while for ratios
20:1 and above we used the low-level experiment workload.
These two workloads are separated in the tables by a hori-
zontal line.

As we can notice from Table 2, HMN achieves a rea-
sonable reduction in the objective function, even though its
efficacy decreases as the number of guests to be mapped in-
creases. It is an expected behavior, as more guests reduce
the chance of migrations during the migration stage.

It is also possible to notice that the main responsible
for the success in finding a mapping to the virtual environ-
ment is the A*Prune algorithm. It is evidenced both by the
large number of failures when hosting is applied without
A*Prune and by the success rate of Random mapping with
A*Prune. Nevertheless, the great number of failures of HA
compared to R is due to the fact that, in the Random ap-
proach, both mapping of guests and of virtual links were
retried, while in HA only the last one were retried; so, if the

initial mapping of guests did not allow a mapping of links,
this heuristic fails to find a solution.

Even though a Random heuristic combined with
A*Prune is able to find valid mappings, we argue that an
initial hosting by network affinity is still the best choice.
That is because in the case of mapping virtual environment
with a few links with high bandwidth demand, or even with
a demand that exceeds the capacity of the real links, HMN
is able to produce a valid mapping, while an algorithm that
does not group guests with high communication might not
be able to find a valid mapping.

Regarding our initial hypothesis that the chosen objec-
tive function (Equation 10) reduces the experiment execu-
tion time, we found a correlation of 0.7 between the objec-
tive function and the execution time of the experiment in
the simulated environment. It supports the use of Equation
10 as a suitable representation of an objective function for a
mapping aiming at reducing the execution time of an emu-
lation.

Figure 1 shows average execution time and standard de-

. . . . _
2000 r B
w
2
S 1500 | 1
[$]
[0]
2
[0] L 4
£ 1000
500 r B
N

0 5000 10000 15000 20000
virtual links

Figure 1. HMN execution time in function of
number of virtual links being mapped (torus
cluster).



Table 2. Objective function and failures.

2-D Torus Switched

HMN R RA HS HMN R RA HS
2510015 | 5739 59606 54652 68388 | 25546 64345 62095 7283.1
510015 | 1241.1 65172  5717.7 — | 23207 67053 64424 76111
7510015 | 28156 — — 5734.4 — | 31378 67442 6488 72588
10:10.015 | 5619.8 ~ — 564735  — | 56121 67498 6395 68457
25:10.02 | 6417 59598 56002  7325.1 | 2580.6 64929 63294  7542.1
51002 | 14186 65927  5727.2 — | 23727 64403 64248 77168

7.5:1002 | 2603.1  — 5955.7 — | 29292 67375 63897 6966
10:10.02 | 54689  — 5590.2 — | 54578 67157 63302  6600.6

2.5:10.025 | 567.06 63018 57012 76124 | 2581.6 6619.2 64313 7665
5:10.025 | 13003 63984  5655.2 — | 23517 67144 63893 74804

7.5:10.025 | 3039 — 5743.9 — | 32983 67463 64593 7347
10:10.025 | 54739  — 5636.2 — | 54649 6981  6373.1  6839.7
20:10.01 | 20031  — 8334.2 — | 34151 87767 91085 9520.8
30:10.01 | 38781  — 8556.5 — | 43782 89029 9268.1 96022
40:10.01 | 56149  — 8447.7 — 5744 88004 91613 92659
50:10.01 | 8928 — 8483.7 — 8875 99972 92443 100827

Failures [ 5 322 4 520 T 5 3 3 5

viation of HMN in function of the number of virtual links
being mapped in the torus cluster. Most part of mapping
time is spend in the Networking stage to calculate the short-
est path of each host ¢; to the link destination. This time,
however, varied considerably in different simulations of a
same scenario. One factor that contributes to this varia-
tion is the number of virtual links actually being mapped
in the Networking stage, because links whose guests are in
the same host are not mapped, as they are handled inside
the host. For mapping 2000 guests and 19990 links in a
torus cluster, HMN took 30 minutes. Nevertheless, it is an
acceptable time, considering that the time to deploy such
virtual environment tend to be greater than that [11].

For the switched cluster, the mapping time was less than
one second in all scenarios. It happens because in this
topology there is only one possible path to each virtual
link, namely, the path that goes from the origin host, passes
through the switches and reaches the destination host. This
small mapping time is an important result, because switched
clusters are widely used, and HMN performs well in such
widely-available topology.

Because HMN may fail in finding a mapping in scenarios
in which the requirements of the virtual system is to close
to the resource availability, better heuristics to be applied in
these specific cases are subject of current research. While
more specific heuristics are not available, HMN heuristic
can be successfully applied to solve the mapping problem
in general environments.

6. Conclusion and Future Work

Even though there are several distributed systems em-
ulators proposed in literature, no one tackles the prob-
lem of automatic mapping of virtual elements to physical

ones, considering resources and network constraints, in ar-
bitrary network topologies. In this paper, a modeling of the
problem has been presented together with a solution. The
proposed heuristic, named Hosting-Migration-Networking
(HMN) heuristic, is able to deliver suitable solutions to the
problem for a remarkable amount of usage scenarios.

The goal of HMN is finding a mapping that balances the
load of the hosts regarding utilization of CPU, respecting
the constraints imposed by hosts resources (memory and
storage) and also respecting links constraints (bandwidth
and latency). Experiments shown that the load balance con-
tributes for reducing the time to run the experiment over the
emulated environment.

Nevertheless, there are usage scenarios in which better
solutions can be sought. As future works, we intend to de-
velop new heuristics that cover the scenarios where HMN
does not perform well. The goal is to offer to the emulator a
pool of different heuristics that might be selected according
to the emulated scenario. Finally, heuristics for different op-
timization goals can be developed. For example, one could
be interested in a mapping whose goal is to minimize the
amount of hosts used in each emulation. Variations in the
HMN heuristic in order to attend such different objective
functions are also subject of current research.

While more specific heuristics are not available, HMN
can be used to solve the mapping problem in general envi-
ronments. HMN successfully accomplish its goal of pro-
viding a heuristic to map virtual machines and virtual links
to hosts and physical paths, respectively, in an acceptable
time even for large instances of the problem. Consider-
ing that availability of large virtualized environments is in-
creasing, automatic methods to determine virtual machines
placement, such as HMN, are paramount for the success-
fully adoption of these platforms as testbeds for testing of



[2

13

4

—

]

—

Table 3. Simulation time (seconds).

2-D Torus Switched
HMN R RA HS HMN R RA HS
2510015 | 052 082 081 141 | 052 08 082 151
510015 | 076 133 127 — | 076 14 132 178
7.5:10.015 0.96 — 1.85 — 0.96 1.82 1.84 222
10:10015 | 152  — 237 — | 152 231 223 235
25:1002 | 054 083 079 144 | 054 077 082 148
5:10.02 0.77 1.33  1.34 — 0.77 1.3 1.29  1.89
751002 | 097 — 177 — | 097 18 173 203
10:1002 | 153 — 225 — | 153 225 225 224
2.5:10.025 0.55 0.87 077 148 0.55 0.82 0.83 1.63
510025 | 076 129 13 — | 076 132 132 185
7.5:10.025 0.99 — 1.87 — 0.99 176 1.83  2.09
10:10025 | 147 — 235  — | 147 236 24 229
201001 | 067  — 108 — | 067 104 1.06 149
30:1 0.01 0.92 — 1.6 — 0.92 1.56 1.63 2.09
40:1001 | 112 — 206 — | 1.2 206 208 233
50:1 0.01 1.9 — 2.88 — 1.9 295 286 3.01
distributed systems through emulation. replicate a national grid. In 15th IEEE International Sympo-
sium on High Performance Distributed Computing, 2006.
[7] L Foster and C. Kesselman, editors. The Grid: Blueprint for
Acknowledgments a New Computing Infrastructure. Morgan Kaufmann, 1999.
[8] G. Liu and K. G. Ramakrishnan. A*Prune: An algorithm
We would like to thank Marco Netto for their com- for finding K shortest paths subject to multiple constraints.
ments on the paper and also for proofreading the text. This In 20th Annual Joint Conference of the IEEE Computer and
work is partially supported by the CAPES PDEE research Communications Societies, 2001.
grant 1185-08-0 and Australian Research Council (ARC) [9] Y. Liu, Y. Li, K. Xiao, and H. Cui. Mapping resources
and Department of Innovation, Industry, Science and Re- for network emulation with heuristic and genetic algorithms.
search (DIISR). In 6th International Conference on Parallel and Distributed
Computing, Applications and Technologies, 2005.
[10] A.Oram. Peer-to-Peer : Harnessing the Power of Disruptive
References Technologies. O’Reilly, 2001.
[11] B. Quétier, M. Jan, and F. Cappello. One step further in
[1]1 G. Apostolopoulos and C. Hassapis. V-eM: A cluster of large-scale evaluations: the V-DS environment. Research
virtual machines for robust, detailed, and high-performance Report RR-6365, Institut National de Recherche en Infor-
network emulation. In 14th IEEE International Symposium matique et en Automatique, 2007.
on Modeling, Analysis, and Simulation of Computer and [12] M. A. Rappa. The utility business model and the future
Telecommunication Systems, 2006. of computing services. IBM Systems Journal, 43(1):32-42,
R. Buyya, R. Ranjan, and R. N. Calheiros. Modeling and 2004.
simulation of scalable cloud computing environments and [13] R. Ricci, C. Alfeld, and J. Lepreau. A solver for the net-
the cloudsim toolkit: Challenges and opportunities. In work testbed mapping problem. ACM SIGCOMM Computer
7th High Performance Computing and Simulation (HPCS), Communication Review, 33(2):65-81, 2003.
20009. [14] A. Singh, M. Korupolu, and D. Mohapatra. Server-storage
R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and virtualization: integration and load balancing in data centers.
I. Brandic. Cloud computing and emerging IT platforms: In ACM/IEEE conference on Supercomputing, 2008.
Vision, hype, and reality for delivering computing as the 5th [15] Q. Sun and G. pu Wang. Study on the performance of the
utility. Future Generation Computer Systems, 25(6):599— A*Prune QoS routing algorithm for intelligent optical net-
616, 2009. works and its improvements. The Journal of China Univer-
R. N. Calheiros, M. Storch, E. Alexandre, C. A. F. D. Rose, sities of Posts and Telecommunications, 13(3):65-70, 2006.
and M. Breda. Applying virtualization and system man- [16] A. L Sundararaj, M. Sanghi, J. R. Lange, and P. A. Dinda.

[5

[6

—

—_

agement in a cluster to implement an automated emulation
testbed for grid applications. In 20th International Sym-
posium on Computer Architecture and High Performance
Computing SBAC-PAD, 2008.

R. Canonico, P. D. Gennaro, V. Manetti, and G. Ventre. Vir-
tualization techniques in network emulation systems. In

Euro-Par 2007 Workshops: Parallel Processing, 2007.
S. Childs, B. Coghlan, J. Walsh, D. O’Callaghan,

G. Quigley, and E. Kenny. A virtual TestGrid, or how to

(17]

Hardness of approximation and greedy algorithms for the
adaptation problem in virtual environments. In /EEE Inter-
national Conference on Autonomic Computing, 2006.

A. 1. Sundararaj, M. Sanghi, J. R. Range, and P. A.
Dinda. An optimization problem in adaptive virtual envi-
ronments. ACM SIGMETRICS Performance Evaluation Re-
view, 33(2):6-8, 2005.



