
 1

Utility Computing on Global Grids
�
�

Chee Shin Yeo, Rajkumar Buyya1, Marcos Dias de Assunção, Jia Yu, Anthony Sulistio,
Srikumar Venugopal, and Martin Placek

Gri d Computing and Distributed Systems (GRIDS) Laboratory

Department of Computer Science and Software Engineering
The University of Melbourne, Melbourne, VIC 3010, Australia

Email: {csyeo, raj, marcosd, jiayu, anthony, srikumar, mplac}@csse.unimelb.edu.au

1. Introduction

1.1. Potential of Grids as Utility Computing Environments
1.2. Challenges of Realizing Utility Computing Models

2. Utility Grids
3. Utility-based Resource Allocation at Various Levels

3.1. Clusters
3.2. Distributed Storage
3.3. Computational Grid Brokering
3.4. Data Grids
3.5. Workflow Scheduling
3.6. Advanced Reservation
3.7. Cooperative Virtual Organizations

4. Industrial Solutions for Utility Computing
4.1. HP Adaptive Enterprise
4.2. IBM E-Business On Demand
4.3. Oracle On Demand
4.4. Sun Microsystems Sun Grid

5. Summary
6. Acknowledgements
7. Glossary
8. References

Keywords: Utility Computing, Grid Computing, Service Level Agreement, Market-based Resource
Allocation, On Demand Computing, Middleware, Service-Oriented Architecture, Virtual Organization,
Adaptive Enterprise.

1. Introduction
The growing popularity of the Internet and the availability of powerful computers and high-speed networks
as low-cost commodity components are changing the way we do computing. These technological
developments have led to the possibility of using networks of computers as a single, unified computing
resource, known as cluster computing [1][2]. Clusters appear in various forms: high-performance clusters,
high-availability clusters, dedicated clusters, non-dedicated clusters, and so on. In addition, computer
scientists in the mid-1990s, inspired by the electrical power grid’s pervasiveness and reliability, began
exploring the design and development of a new infrastructure, computational power grids for sharing
computational resources such as clusters distributed across different organisations [3].

In the business world, cluster architecture-based large-scale computing systems, called data centers,
offering high-performance and high-available hosting services are widely used. The reliable and low-cost
availability of data center services has encouraged many businesses to outsource their computing needs;
thus heralding a new utility computing model.

Utility computing is envisioned to be the next generation of Information Technology (IT) evolution that
depicts how computing needs of users can be fulfilled in the future IT industry [4]. Its analogy is derived

1 Corresponding author, email – raj@csse.unimelb.edu.au

 2

from the real world where service providers maintain and supply utility services, such as electrical power,
gas, and water to consumers. Consumers in turn pay service providers based on their usage. Therefore, the
underlying design of utility computing is based on a service provisioning model, where users (consumers)
pay providers for using computing power only when they need to.

These developments appears like realization of the vision of Leonard Kleinrock, one of the chief scientists
of the original Advanced Research Projects Agency Network (ARPANET) project which seeded the
Internet, who said in 1969 [5]: “As of now, computer networks are still in their infancy, but as they grow up
and become sophisticated, we will probably see the spread of ‘computer utilities’ which, like present
electric and telephone utilities, will service individual homes and offices across the country.”

Benefits of Utility Computing
The utility computing model offers a number of benefits to both service providers and users. From the
provider’s perspective, actual hardware and software components are not set up or configured to satisfy a
single solution or user, as in the case of traditional computing. Instead, virtualized resources are created and
assigned dynamically to various users when needed. Providers can thus reallocate resources easily and
quickly to users that have the highest demands. In turn, this efficient usage of resources minimizes
operational costs for providers since they are now able to serve a larger community of users without letting
unused resources go unutilized. Utility computing also enables providers to achieve a better Return On
Investment (ROI) such as Total Cost of Ownership (TCO) since shorter time periods are now required to
derive positive returns and incremental profits can be earned with the gradual expansion of infrastructure
that grows with user demands.

For users, the most prominent advantage of utility computing is the reduction of IT-related operational
costs and complexities. Users no longer need to invest heavily or encounter difficulties in building and
maintaining IT infrastructures. Computing expenditures can now be modeled as a variable cost depending
on the usage patterns of users, instead of as a static cost of purchasing technologies and employing staff to
manage operations. Users neither need to be concerned about possible over- or under-utilization of their
own self-managed IT infrastructures during peak or non-peak usage periods, nor worry about being
confined to any single vendor’s proprietary technologies. With utility computing, users can obtain
appropriate amounts of computing power from providers dynamically, based on their specific service needs
and requirements. This is particularly useful for users who experience rapidly increasing or unpredictable
computing needs. Such an outsourcing model thus provides increased flexibility and ease for users to adapt
to their changing business needs and environments [6].

Figure 1. Risks of not becoming an adaptive organization (Source: META Group [7]).

 3

Figure 2. Goals of using adaptive solutions (Source: META Group [7]).

In today’s highly competitive and rapidly changing market environment, business organizations aim to be
more adaptive in their business and IT strategies, in order to stay ahead of other competitors (see Figure 1).
An adaptive organization requires enhanced IT processes and better resource utilization in order to deliver
faster response, higher productivity, and lower costs (see Figure 2). Therefore, there seems to be a potential
to employ utility computing models for business organizations to be more adaptive and competitive.

1.1. Potential of Grids as Utility Computing Environments
The aim of Grid computing is to enable coordinated resource sharing and problem solving in dynamic,
multi-institutional virtual organizations [8]. An infinite number of computing devices ranging from high
performance systems such as supercomputers and clusters, to specialized systems such as visualization
devices, storage systems, and scientific instruments, are logically coupled together in a Grid and presented
as a single unified resource [9] to the user. Figure 3 shows that a Grid user can easily use these globally
distributed Grid resources by interacting with a Grid resource broker. Basically, a Grid user perceives the
Grid as a single huge virtual computer that provides immense computing capabilities, identical to an
Internet user who views the World Wide Web as a unified source of content.

Grid Resource Broker

Resource Broker

Application

Grid Information Service

Grid Resource Broker

databaseR2 R3

RN

R1

R4

R5

R6

Grid Information Service

Grid Resource Broker

Resource Broker

Application

Grid Information Service

Grid Resource Broker

databasedatabaseR2 R3

RN

R1

R4

R5

R6

Grid Information Service

Figure 3. A generic view of a global Grid.

 4

A diverse range of applications are currently or soon to be employed on Grids, some of which include:
aircraft engine diagnostics, earthquake engineering, virtual observatory, bioinformatics, drug discovery,
digital image analysis, high energy physics, astrophysics, and multi-player gaming [3]. Grids can be
primarily classified into the following types, depending on the nature of their emphasis [10] as depicted in
Figure 4:

� Computational Grid: Aggregates the computational power of globally distributed computers (e.g.
TeraGrid [11], ChinaGrid [12], and APACGrid [13]).

� Data Grid: Emphasizes on a global-scale management of data to provide data access, integration,
and processing through distributed data repositories (e.g. LHCGrid [14] and GriPhyN [15]).

� Application Service Provisioning (ASP) Grid: Focuses on providing access to remote applications,
modules, and libraries hosted on data centers or Computational Grids (e.g. NetSolve/GridSolve
[16]).

� Interaction Grid: Focuses on interaction and collaborative visualization between participants (e.g.
AccessGrid [17]).

� Knowledge Grid: Aims towards knowledge acquisition, processing, management, and provide
business analytics services driven by integrated data mining services (e.g., Italian KnowledgeGrid
[18] and EU DataMiningGrid [19]).

� Utility Grid: Focuses on providing all the Grid services including compute power, data, and
services to end-users as IT utilities on a subscription basis and the infrastructure necessary for
negotiation of required Quality of Service (QoS), establishment and management of contracts, and
allocation of resources to meet competing demands from multiple users and applications (e.g.
Gridbus [20] and Utility Data Center [21]).

These various types of Grids follow a layered design, with the Computational Grid as the bottom-most
layer and the Utility Grid as the top-most layer. A Grid on a higher layer utilizes the services of Grids that
operate at lower layers in the design. For example, a Data Grid utilizes the services of Computational Grid
for data processing and hence builds on it. In addition, lower-layer Grids focus heavily on infrastructural
aspects, whereas higher-layer ones focus on users and QoS delivery. Accordingly, Grids are proposed as
the emerging cyber infrastructure to power utility computing applications.

����������	�
����

��������

�������

�	�������	����

�	��
��������

���
�������

���������	���

��

��

Figure 4: Types of Grids and their focus.

Grids offer a number of benefits such as:

� Transparent and instantaneous access to geographically distributed and heterogeneous resources.
� Improved productivity with reduced processing time.
� Provisioning of extra resources to solve problems that were previously unsolvable due to the lack

of resources.
� A more resilient infrastructure with on-demand aggregation of resources at multiple sites to meet

unforeseen resource demand.

 5

� Seamless computing power achieved by exploiting under-utilized or unused resources that are
otherwise wasted.

� Maximum utilization of computing facilities to justify IT capital investments.
� Coordinated resource sharing and problem solving through virtual organizations [8] that facilitates

collaboration across physically dispersed departments and organizations.
� Service Level Agreement (SLA) based resource allocation to meet QoS requirements.
� Reduced administration effort with integration of resources as compared to managing multiple

standalone systems.

Grid resources
Desktops, servers, clusters, networks, applications, storage,

devices + resource manager + monitor

Security Services
Authentication, Single sign-on, secure communication

Job submission, info services, Storage access, Trading,
Accounting, License

Resource management and scheduling

Grid programming environment and tools
Languages, API, libraries, compilers, parallelization tools

Grid applications
Web Portals, Applications,

Grid Fabric

Grid
Applications

A
daptive M

anagem
ent

���
����
����

��������

����
����

Figure 5. A layered Grid architecture.

Layered Grid Architecture
The components that are necessary to form a Grid are shown in Figure 5. The layered Grid architecture
organizes various grid capabilities and components such that high level services are built using lower-level
services. Grid economy [22] is essential for achieving adaptive management and utility-based resource
allocation and thus influences various layers of the architecture:

� Grid fabric software layer: Provides resource management and execution environment at local
Grid resources. These local Grid resources can be computers (e.g. desktops, servers, or clusters)
running a variety of operating systems (e.g. UNIX or Windows), storage devices, and special
devices such as a radio telescope or heat sensor. As these resources are administered by different
local resource managers and monitoring mechanisms, there needs to be Grid middleware that can
interact with them.

� Core Grid middleware layer: Provides Grid infrastructure and essential services which consists of
information services, storage access, trading, accounting, payment, and security. As a Grid
environment is highly dynamic where the location and availability of services are constantly
changing, information services provide the means for registering and obtaining information about
Grid resources, services, and status. Resource trading based on the computational economy
approach is suitable given the complex and decentralized manner of Grids. This approach provides
incentives for both resource providers and users to be part of the Grid community, and allows
them to develop strategies to maximize their objectives. Security services are also critical to
address the confidentiality, integrity, authentication, and accountability issues for accessing
resources across diverse systems that are autonomously administered.

 6

� User-level middleware layer: Provides programming frameworks and policies for various types of
applications, and resource brokers to select appropriate and specific resources for different
applications. The Grid programming environment and tools should support common programming
languages (e.g. C, C++, Fortran, and Java), a variety of programming paradigms (e.g. message
passing [23] and Distributed Shared Memory (DSM) [24]), and a suite of numerical and
commonly used libraries. Resource management and scheduling should be transparent to the users
such that processor time, memory, network, storage, and other resources in Grids can be utilized
and managed effectively and efficiently using middleware such as resource brokers.

� Grid applications Layer: Enables end-users to utilize Grid services. Grid applications thus need to
focus on usability issues so that end-users can find them intuitive and easy to use. They should
also be able to function on a variety of platforms and operating systems so that users can easily
access them. Therefore, an increasingly number of web portals are being built since they allow
users to ubiquitously access any resource from anywhere over any platform at any time.

The design aims and benefits of Grids are analogous to those of utility computing, thus highlighting the
potential and suitability of Grids to be used as utility computing environments. The current trend of
implementing Grids based on open standard service-based architectures to improve interoperability is a step
towards supporting utility computing [25]. Even though most existing Grid applications are scientific
research and collaboration projects, the number of Grid applications in business and industry-related
projects is also gradually increasing. It is thus envisioned that the realization of utility computing through
Grids will follow a similar course as the World Wide Web, which was first initiated as a scientific project
but was later widely adopted by businesses and industries.

1.2. Challenges of Realizing Utility Computing Models
There are several challenges that need to be addressed in order to realize utility computing. One challenge
is that both providers and users need to redraft and reorganize their current IT-related procedures and
operations to include utility computing [9]. New IT policies need to be negotiated and agreed upon between
providers and users, compared to the previous situation where providers and users owned and controlled
their standalone policies. Providers must also understand specific service needs and requirements of users
in order to design suitable policies for them. Open standards need to be established to facilitate successful
adoption of utility computing so that users and producers experience fewer difficulties and complexities in
integrating technologies and working together, thus reducing associated costs. Table 1 lists some of the
major computing standards organizations and the activities they are engaged in.

With the changing demand of service needs from users, providers must be able to fulfill the dynamic
fluctuation of peak and non-peak service demands. Service contracts known as SLAs are used by providers
to assure users of their level of service quality. If the expected level of service quality is not met, providers
will then be liable for compensation and may incur heavy losses. Therefore, providers seek to maximize
customer satisfaction by meeting service needs and minimize the risk of SLA violations [27]. Improved
service-oriented policies and autonomic controls [28][29] are essential for achieving this.

Other than managing the technological aspects of delivering computing services, providers also need to
consider the financial aspects of service delivery. Financial risk management for utility computing [30] is
comprised of two factors: delivery risk and pricing risk. Delivery risk factors examine the risks concerned
with each possible scenario in which a service can be delivered. Pricing risk factors study the risks involved
with pricing the service with respect to the availability of resources. Given shorter contract durations, lower
switching costs, and uncertain customer demands in utility computing environments, it is important to have
dynamic and flexible pricing schemes to potentially maximize profits and minimize losses for providers
[31].

There are also potential non-technical obstacles to successful adoption of utility computing such as cultural
and people-related issues that will require organizations to change their current stance and perceptions [32].
The most worrying issues being perceived are loss of control or access to resources, risks associated with
enterprise-wide deployment, loss or reduction of budget dollars, and reduced priority of projects. Thus,
overcoming these non-technical obstacles is extremely critical and requires the dissemination of correct
information to all levels of management within organizations to prevent the formation of misperceptions.

 7

Table 1. Some major standards organizations (Source: J. Joseph, et al. [26]).

Organization Website Standards Activities

Open Grid Forum (OGF) http://www.ogf.org Grid computing, distributed computing, and
peer-to-peer networking.

World Wide Web
Consortium (W3C)

http://www.w3c.org World Wide Web (WWW), Extensible
Markup Language (XML), web services,
semantic web, mobile web, and voice
browser.

Organization for the
Advancement of
Structured Information
Standards (OASIS)

http://www.oasis-open.org Electronic commerce, systems
management and web services extensions,
Business Process Execution Language for
Web Services (BPEL4WS), and portals.

Web Services
Interoperability
Organization (WS-I)

http://www.ws-i.org Interoperable solutions, profiles, best
practices, and verification tools.

Distributed Management
Task Force (DMTF)

http://www.dmtf.org Systems management.

Internet Engineering
Task Force (IETF)

http://www.ietf.org Network standards.

European Computer
Manufacturers
Organization (ECMA)

http://www.ecma-international.org Language standards (C++, C#).

International
Organization for
Standardization (ISO)

http://www.iso.org Language standards (C++, C#).

Object Management
Group (OMG)

http://www.omg.org Model-Driven Architecture (MDA), Unified
Modeling Language (UML), Common
Object Resource Broker Architecture
(CORBA), and real-time system modeling.

Java Community Process
(JCP)

http://www.jcp.org Java standards.

2. Utility Grids
This chapter focuses on the use of Grid technologies to achieve utility computing. An overview of how
Grids can support utility computing is first presented through the architecture of Utility Grids. Then, utility-
based resource allocation is described in detail at each level of the architecture. Finally, some industrial
solutions for utility computing are discussed.

A reference service-oriented architecture for Utility Grids is shown in Figure 6. The key players in a Utility
Grid are the Grid user, Grid resource broker, Grid middleware services, and Grid Service Providers (GSPs).
The Grid user wants to make use of Utility Grids to complete their applications. Refactoring existing
applications is thus essential to ensure that these applications are Grid-enabled to run on Utility Grids [33].
The Grid user also needs to express the service requirements to be fulfilled by GSPs. Varying QoS
parameters, such as deadline for the application to be completed and budget to be paid upon completion,
are defined by different Grid users, thus resulting in dynamic fluctuation of peak and non-peak service
demands. The Grid resource broker then discovers appropriate Grid middleware services based on these
service demand patterns and QoS requirements, and dynamically schedule applications on them at runtime,
depending on their availability, capability, and costs. A GSP needs tools and mechanisms that support
pricing specifications and schemes so they can attract users and improve resource utilization. They also
require protocols that support service publication and negotiation, accounting, and payment.

 8

Grid Node N

Grid User

P
ro

gr
am

m
in

g
E

nv
iro

nm
en

ts

Grid Resource Broker

Grid Service Providers

Grid Explorer

Schedule Advisor

Trade Manager

Job
Control
Agent

Deployment Agent

Trade Server

Resource Allocation

Resource
Reservation

R1

Misc. services

Information
Service

R2 Rm
…

Pricing
Algorithms

Accounting

Grid Node1

…

Grid Middleware
Services

…

…

Health
Monitor

Grid Market
Services

JobExec

Information
Query

Secure

Trading

QoS

Storage

Sign-on

Grid Bank

A
pp

lic
at

io
ns

Data Catalogue

Grid Node N

Grid User

P
ro

gr
am

m
in

g
E

nv
iro

nm
en

ts

Grid Resource Broker

Grid Service Providers

Grid Explorer

Schedule Advisor

Trade Manager

Job
Control
Agent

Deployment Agent

Trade Server

Resource Allocation

Resource
Reservation

R1

Misc. services

Information
Service

R2 Rm
…

Pricing
Algorithms

Accounting

Grid Node1

…

Grid Middleware
Services

…

…

Health
Monitor

Grid Market
Services

JobExec

Information
Query

Secure

Trading

QoS

Storage

Sign-on

Grid Bank

A
pp

lic
at

io
ns

Data Catalogue

Figure 6. A reference service-oriented architecture for Utility Grids.

The Grid resource broker comprises the following components:
� Job control agent: Ensures persistency of jobs by coordinating with schedule advisor for schedule

generation, handling actual creation of jobs, maintaining job status, and interacting with users,
schedule advisor, and deployment agent.

� Grid explorer: Interacts with Grid information service to discover and identify resources and their
current status.

� Schedule advisor: Discovers Grid resources using the Grid explorer, and select suitable Grid
resources and assign jobs to them (schedule generation) to meet users’ requirements.

� Trade manager: Accesses market directory services for service negotiation and trading with GSPs
based on resource selection algorithm of schedule advisor.

� Deployment agent: Activates task execution on the selected resource according to schedule
advisor’s instruction and periodically updates the status of task execution to job control agent.

Traditional core Grid middleware focuses on providing infrastructure services for secure and uniform
access to distributed resources. Supported features include security, single sign-on, remote process
management, storage access, data management, and information services. An example of such middleware
is the Globus toolkit [34] which is a widely adopted Grid technology in the Grid community. Utility Grids
require additional service-driven Grid middleware infrastructure that includes:

� Grid market directory: Allows GSPs to publish their services so as to inform and attract users.
� Trade server: Negotiates with Grid resource broker based on pricing algorithms set by the GSP

and sells access to resources by recording resource usage details and billing the users based on the
agreed pricing policy.

� Pricing algorithms: Specifies prices to be charged to users based on the GSP’s objectives, such as
maximizing profit or resource utilization at varying time and for different users.

� Accounting and charging: Records resource usage and bills the users based on the agreed terms
negotiated between Grid resource broker and trade server.

Figure 7 shows how services are assembled on demand in a Utility Grid. The application code is the legacy
application to be run on the Utility Grid. Users first compose their application as a distributed application
such as parameter sweep using visual application composer tools (Step 1). The parameter sweep model
creates multiple independent jobs, each with a different parameter. This model is well suited for Grid
computing environments wherein challenges such as load volatility, high network latencies, and high
probability of individual node failures make it difficult to adopt a programming approach which favors

 9

tightly coupled systems. Accordingly, a parameter sweep application has been termed as a “killer
application” for the Grid [35].

��������
����

�����	 ��������

������!����������

���
"�����	��	��������#

���$��
���%�	!

���
"�&�&'��� �#

�(
���

"�&�&'�)���#

�(

���
"�&�&'��%�#

���
�
�(

�����
���	
�����
��������

���
���	�
���

��

�*�

�
�������+���
�

, �
$

-

���
.�������%�!�

/

)����
����
������	��������

���
������	�����
������
�

���0

1

2

3

4

. �
� �

� �

5 6

. � � �
� � 7

� � � � ��
	 �

08

00

����

0/
���������
����

��������
����

�����	 ��������

������!������������������
����

�����	 ��������

������!����������

���
"�����	��	��������#

���$��
���%�	!

���
"�����	��	��������#

���$��
���%�	!

���
"�&�&'��� �#

�(
���

"�&�&'�)���#

�(

���
"�&�&'��%�#

���
�
�(

�����
���	
�����
��������

���
���	�
���

��

�*�

�
�������+���
�

���
"�&�&'��� �#

�(
���

"�&�&'�)���#

�(

���
"�&�&'��%�#

���
�
�(

�����
���	
�����
��������

���
���	�
���

��

�*�

�
�������+���
�

, �
$

-

, �
$

, �
$

, �
$

-

���
.�������%�!�

/

���
.�������%�!�

//

)����
����
������	��������

���
������	�����
������
�

���0

)����
����
������	��������

���
������	�����
������
�

���0

11

22

33

44

. �
� �

� �

5

. �
� �

� �
. �

� �

� �

5 66

. � � �
� � 7

� � � � ��
	 �

08

. � � �
� � 7

� � � � ��
	 �

08

0000

����

0/

��������

0/
���������
����

Figure 7. On demand assembly of services in a Utility Grid.

Visual tools allow rapid composition of applications for Grids by hiding the associated complexity from the
user. The user’s analysis and QoS requirements are submitted to the Grid resource broker (Step 2). The
Grid resource broker first discovers suitable Grid services based on user-defined characteristics, including
price, through the Grid information service and the Grid market directory (Steps 3 and 4). The broker then
identifies the list of data sources or replicas through a data catalogue and selects the optimal ones (Step 5).
The broker also identifies the list of GSPs that provides the required application services using the
Application Service Provider (ASP) catalogue (Step 6). The broker checks that the user has the necessary
credit or authorized share to utilize the requested Grid services (Step 7). The broker scheduler assigns and
deploys jobs to Grid services that meet user QoS requirements (Step 8). The broker agent on the Grid
resource at the GSP then executes the job and returns the results (Step 9). The broker consolidates the
results before passing them back to the user (Step 10). The metering system charges the user by passing the
resource usage information to the accounting service (Step 11). The accounting service reports remaining
resource share allocation and credit available to the user (Step 12).

Layered Grid Architecture Realization

To enable Utility Grids, the Gridbus project has offered open-source Grid middleware [36] for various
layers (as highlighted in Figure 8) that include:

� Grid fabric software layer: Libra, a utility-driven cluster scheduler that considers and enforces
SLAs for jobs submitted into the cluster.

� Core Grid middleware layer: Alchemi which is a .NET-based desktop Grid framework, Grid
Market Directory which is a directory publishing available Grid services, Grid Bank which
provides accounting, authentication and payment facilities, and GridSim which is a event-driven
simulator that models Grid environments.

� User-level middleware layer: Gridbus broker that selects suitable Grid services and schedules
applications to run on them, Grid workflow engine that provides workflow execution and

 10

monitoring on Grids, and Visual Parametric Modeler that provides a graphical environment to
parameterize applications.

� Grid application layer: Web portals such as Gridscape that provide interactive and dynamic web-
based Grid monitoring portals and G-Monitor that manages execution of applications on Grids
using brokers.

��������	
�	���
 �	���

���� Grid
Fabric
Software

Grid
Applications

Core Grid
Middleware

User-Level
Middleware
(Grid Tools)

��	
����

��	�
�����������
����� 	��

!"#

��	�������
$

�%&���'� �������(������

��)�
�������

#&�

*���� ��� ��'�� &��

�����'	

����+���

�,�� -��. #��

�)��

���)�
 /�	���� 99
��	�

#����
0	��� ��1

PDB

CDB

������
����

Grid
Fabric
Hardware

99

&�� ��
��	���� *�''���� ���	����	�� 99*����)��� ��	�

99

����+�������	��

��	�
� ������

�����'1

��	
��

���
�'1

������	 ���	

�������	

�	'��%�

�
,
�
0
�
�
#

��	
��(�

Legend: Gridbus Project Components

Gridbus Project Economy-oriented Components

��������	
�	���
 �	���

���� Grid
Fabric
Software

Grid
Applications

Core Grid
Middleware

User-Level
Middleware
(Grid Tools)

��	
����

��	�
�����������
����� 	��

!"#

��	�������
$

�%&���'� �������(������

��)�
�������

#&�

*���� ��� ��'�� &��

�����'	

����+���

�,�� -��. #��

�)��

���)�
 /�	���� 99
��	�

#����
0	��� ��1

PDB

CDB

������
����

Grid
Fabric
Hardware

99

&�� ��
��	���� *�''���� ���	����	�� 99*����)��� ��	�

99

����+�������	��

��	�
� ������

�����'1

��	
��

���
�'1

������	 ���	

�������	

�	'��%�

�
,
�
0
�
�
#

��	
��(�

��������	
�	���
 �	���

���� Grid
Fabric
Software

Grid
Applications

Core Grid
Middleware

User-Level
Middleware
(Grid Tools)

��	
����

��	�
�����������
����� 	��

!"#

��	�������
$

�%&���'� �������(������

��)�
�������

#&�

*���� ��� ��'�� &��

�����'	

����+���

�,�� -��. #��

�)��

���)�
 /�	���� 99
��	�

#����
0	��� ��1

PDBPDB

CDBCDB

������
����

Grid
Fabric
Hardware

99

&�� ��
��	���� *�''���� ���	����	�� 99*����)��� ��	�

99

����+�������	��

��	�
� ������

�����'1

��	
��

���
�'1

������	 ���	

�������	

�	'��%�

�
,
�
0
�
�
#

��	
��(�

Legend: Gridbus Project Components

Gridbus Project Economy-oriented Components

Legend: Gridbus Project Components

Gridbus Project Economy-oriented Components

Figure 8. Realizing Utility Grids: Gridbus and complementary technologies.

3. Utility-based Resource Allocation at Various Levels
Utility-based resource allocation is essential at various levels of the Utility Grid in order to realize the
utility computing model. This section examines the challenges involved in clusters, distributed storage,
Computational Grid brokering, Data Grids, workflow scheduling, advanced reservation, and cooperative
virtual organizations.

3.1. Clusters
A cluster is a type of parallel or distributed computer system, which consists of a collection of inter-
connected stand-alone computers working together as a single integrated computing resource [1][2].
Clustering these stand-alone computers together has resulted in high-performance, high-availability, and
high-throughput processing on a network of computers at a much lower cost than traditional
supercomputing systems, thus resulting in cluster computing being a more viable choice as a
supercomputing solution. As clusters are extensively utilized in Data Centers that promise to provide
managed computing, storage, and application services at low cost, the cost of ownership and maintenance
need to be reduced. But, clusters are heavily focused on increasing peak performance using tens of
thousands of power hungry components, which is leading to intolerable operating cost and failure rates
[37]. Thus recently, power-aware clusters have been built to reduce power consumption by leveraging DVS
(Dynamic Voltage Scaling) techniques and employing distributed performance-directed DVS scheduling
strategies. Such clusters are able to gain similar performance, yet reduce the amount of power consumption.

Currently, service-oriented Grid technologies are employed to enable utility computing environments
where the majority of Grid resources are clusters. Grid schedulers such as brokers and workflow engines
can then discover suitable Grid resources and submit jobs to them on the behalf of the users. If the chosen
Grid resource is a cluster, these Grid schedulers then interact with the cluster Resource Management
System (RMS) to monitor the completion of submitted jobs. The cluster RMS is a middleware which

 11

provides a uniform interface to manage resources, queue jobs, schedule jobs and execute jobs on multiple
compute nodes within the cluster. With a utility model, users can specify different levels of service needed
to complete their jobs. Thus, providers and users have to negotiate and agree on SLAs that serve as
contracts outlining the expected level of service performance. Providers can then be liable to compensate
users for any service under-performance. So, the cluster RMS must be able to enable utility-driven cluster
computing by supporting SLA based resource allocation that can meet competing user demands and
enforce their service needs.

Existing cluster RMSs need to be enhanced or extended to adopt utility-driven resource allocation rather
than the current system-centric resource allocation that maximizes resource throughput and utilization of
the cluster. System-centric approaches assume that all job requests are equally important and thus neglect
the actual levels of service required by different users. The cluster RMS should have the following
components:

� Request examiner: Interprets the QoS parameters defined in the SLA.
� Admission control: Determines whether a new job request should be accepted or not. This ensures

that the cluster is not overloaded with too many requests such that service performance
deteriorates.

� SLA based scheduler: New service-oriented policies need to be incorporated to allocate resources
efficiently based on service requirements.

� Job monitor: New measurement metrics need to be used to keep track of whether the execution
progress of jobs meets the service criteria.

� Accounting: Maintains the actual usage of resources so that usage charges can be computed. Usage
information can also be used to make better resource allocation decisions.

� Pricing: Formulate charges for meeting service requests. For example, requests can be charged
based on submission time (peak/off-peak), pricing rates (fixed/variant), or availability of resources
(supply/demand).

� Job control: Enforces resource assignment for executing requests to fulfill specified service needs.

The key design factors and issues for a utility-driven cluster RMS can be addressed from five perspectives
[38]:

� Market model: Considers market concepts present in real-world human economies are can be
applied for service-oriented resource allocation in clusters to deliver utility.

� Resource model: Addresses architectural framework and operating environments of clusters that
need to be conformed.

� Job model: Examines attributes of jobs to ensure that various job types with distinct requirements
can be fulfilled successfully.

� Resource allocation model: Analyzes factors that can influence the resource assignment outcome.
� Evaluation model: Assesses the effectiveness and efficiency of the cluster RMS in satisfying the

utility model.

There is therefore growing research interest in formulating effective service-oriented resource allocation
policies to satisfy the utility model. Computation-at-Risk (CaR) [39] determines the risk of completing jobs
later than expected based on either the makespan (response time) or the expansion factor (slowdown) of all
jobs in the cluster. Cluster-On-Demand [40] reveals the significance of balancing the reward against the
risk of accepting and executing jobs, particularly in the case of unbounded penalty. QoPS [41] incorporates
an admission control to guarantee the deadline of every accepted job by accepting a new job only if its
deadline can be guaranteed without violating the deadlines of already accepted jobs. LibraSLA [42] accepts
jobs with hard deadlines only if they can be met, and accepts jobs with soft deadlines depending on their
penalties incurred for delays. Another work [43] addresses the difficulties encountered by service providers
when they rent resources from resource providers to run jobs accepted from clients. These include
difficulties such as which jobs to accept, when to run them, and which resources to rent to run them. It
analyzes the likely impact on these difficulties in several scenarios, including changing workload, user
impatience, resource availability, resource pricing, and resource uncertainty.

 12

3.2. Distributed Storage
Storage plays a fundamental role in computing as it is present in many key components, from registers and
Random Access Memory (RAM) to hard disk drives and optical disk drives. Combining storage with
networking has created a platform for Distributed Storage System (DSS). The wide proliferation of the
Internet has created a global network – a platform with innovative possibilities such as offering access to
storage as a utility. DSSs functioning in a global environment support sharing of storage across geographic,
institutional, and administrative boundaries. The network speed (bandwidth and latency) and usage load
impact the speed of remote storage access, however, they can be overcome through smart access
management techniques such as demand prediction, preloading, and caching. The key benefits of such DSS
are, it (1) enables aggregation of storage resources from different sources to create mass storage systems at
lower cost, (2) enhances reliability of storage through replication, (3) supports disaster management and
recovery due to replication of content across multiple sites, (4) provides ability to offer access to storage as
utility services, which in turn reduces the cost of ownership and management of storage systems for end
users, and (5) allows organisations to barter or harness each other’s storage systems for transparent sharing
and preservation of digital assets such as e-books, e-music, e-journals, and scientific experimental data.

Some prominent examples of DSS are Parallel Virtual File System (PVFS) [44], General Parallel File
System (GPFS) [45], and Google File System (GFS) [46]. A key challenge in DSS is ensuring that storage
services are shared fairly among users and providers are offered incentive for making storage services
available. One way to achieve this is applying economic principles. Examples of DSS which apply
economic principles to manage various aspects operational behavior include: Mungi which manages
storage quota, Mojo Nation which instills cooperative behavior, Stanford Archival Repository (SAR) which
encourages the sharing of storage services and exchanges, and OceanStore which provides utility storage.
SAR [47] discusses the Stanford Archival Repository, a bartering storage system for preserving
information. Institutions that have common requirements and storage infrastructure can use the framework
to barter with each other for storage services. For example, libraries may use this framework to replicate
their archives among each other for the purpose of preservation. OceanStore [48] is a globally scalable
storage utility, providing paying users with a durable, highly available storage service by utilizing non-
trusted infrastructure. Mungi [49] is a Single-Address-Space Operating System (SASOS), which employs
economic principles to manage storage quota. Mojo Nation [50] uses digital currency, Mojo, to encourage
users to share resources on its network. Users that contribute services are rewarded with Mojo, which can
then be traded for services. Storage Exchange [51] applies a Double Auction (DA) market model allowing
storage services to be traded in a global environment.

Treating storage as a tradable commodity provides incentives for users to participate in the federating and
sharing of their distributed storage services. However, there are still some challenges that need to be
overcome before storage utility can be fully realized:

� Federate: A plethora of heterogeneous storage systems exist, creating a homogenous interface is a
key step in federating storage.

� Share: Ensuring that distributed storage resource is shared fairly among users and that no single
user can deny access to others, accidentally or otherwise.

� Security: Operating on non-trusted infrastructure requires the use of cryptographic mechanisms in
order to enforce authentication and prevent malicious behavior.

� Reliability: Storage medium and network failures are common in a global storage infrastructure,
and therefore mechanisms of remote replicas and erasure codes need to be employed to ensure that
persistent reliable access to stored data is achieved.

Whilst the challenges are many, the weight of incentives and future possibilities from realizing a globally
distributed storage utility ensure the continuing research and development in this area:

� Monetary gain: Institutions providing storage services (providers) are able to better utilize existing
storage infrastructure in exchange for monetary gain. Institutions consuming these storage
services (consumers) have the ability to negotiate for storage services as they require them,
without needing to incur the costs associated with purchasing and maintaining storage hardware.

� Common objectives: There may be institutions that wish to exchange storage services between
themselves due to the presence of a mutual goal such as preservation of information [47].

 13

� Spikes in storage requirements: Research institutions may require temporary access to mass
storage [52] such as needing access to additional storage to temporarily store data generated from
experiments that are carried out infrequently. In exchange, institutions may provide access to their
storage services for use by others when they are unused.

� Donate: Institutions may wish to donate storage services, particularly if these services are going to
a noble cause.

� Autonomic storage: Development of a framework to support future autonomic storage systems
that will allow agents to broker storage on an as needed basis.

3.3. Computational Grid Brokering
A Computational Grid broker acts as an agent for the user in Computational Grids, by performing various
tasks such as resource discovery, job scheduling, and job monitoring on the behalf of the user. To
determine which resources to select, the broker needs to take into account various attributes from both the
user perspective such as resource requirements of the application and the resource perspective such as
resource architecture and configuration, resource status (available memory, disk storage, and processing
power), resource availability, network bandwidth, resource workload, and historical performance.

However, the Computational Grid broker needs to consider additional service-driven attributes such as QoS
requirements specified by users in order to support the utility model. For example, users may specify a
deadline for the completion of their application. The user may also state the maximum price to be paid for
the completion. With the user’s request of deadline and price for an application, the broker tries to locate
the most suitable resources. Thus, during resource discovery, the broker also needs to know the costs of
resources that are set by GSPs which can be obtained from a Grid market directory service. The broker
must be able to negotiate with GSPs to establish an agreed price for the user, before selecting the most
suitable resources with the best price based on the provided QoS. For instance, a more relaxed deadline
should be able to obtain cheaper access to resources and vice-versa. So, different users often have varying
prices based on their specific needs. To achieve this, we need new scheduling algorithms that take into
consideration the application processing requirements, Grid resource dynamics, users’ QoS requirements
such as the deadline and budget, and their optimization preferences.

The Nimrod-G resource broker [53] and Gridbus Grid service broker [54] are examples of a service-
oriented Computational Grid brokers for parameter sweep applications. Both brokers schedule jobs based
on economic principles (through the budget that the user is willing to pay) and a user-defined QoS
requirement (the deadline within which the user requires the application to be completed). Nimrod-G
implements four adaptive algorithms for scheduling compute-intensive parameter sweep applications:

� Cost Optimization: Execution time is within the specified deadline and execution cost is the
cheapest.

� Time Optimization: Execution time is the shortest and execution cost is within the specified
budget.

� Cost-Time Optimization: Similar to cost optimization, but if there are multiple resources with the
same cost, it applies time optimization so that execution time is the shortest given the same cost.

� Conservative Time Optimization: Similar to cost-time optimization, but ensures that each
unprocessed job in the parameter sweep application has a minimum budget-per-job.

The Gridbus broker extends cost and time optimization to schedule distributed data-intensive applications
that require access to and processing of large datasets stored in distributed repositories.

3.4. Data Grids
Data is one of the most important entities within any IT infrastructure. Therefore, any utility computing
platform must be able to provide secure, reliable and efficient management of enterprise data, and must be
able to abstract the mechanisms involved. One of the key factors in the adoption of Grids as a utility
computing platform is the creation of an infrastructure for storing, processing, cataloguing and sharing the
ever-expanding volumes of data that are being produced by large enterprises such as scientific and
commercial collaborations. This infrastructure, commonly known as Data Grids, provides services that
allow users to discover, transfer and maintain large repositories of data. At the very minimum, a Data Grid

 14

provides a high-performance and reliable data transfer mechanism and a data replica management
infrastructure. Data manipulation operations in a Data Grid are mediated through a security layer that, in
addition to the facilities provided by the general Grid security services, also provides specific operations
such as managing access permissions and encrypted data transfers.

In recent years, the Grid community has adopted the Open Grid Service Architecture (OGSA) [55] which
leverages web service technologies such as XML and SOAP to create Grid services that follow standard
platform-independent mechanisms for representation, invocation and data exchange. A subset of OGSA
deals with providing basic interfaces called data services that describe data and the mechanisms to access it.
Data services virtualize the same data by providing multiple views that are differentiated by attributes and
operations. They also enable different data sources such as legacy databases, data repositories and even
spreadsheets to be treated in the same manner via standard mechanisms [56].

Virtualization of data creates many possibilities for its consumption, enabled by the coupling of Grid
services to enable applications such as data-intensive workflows. Already, projects such as Virtual Data
Grid (VDG) [57] represent data not in terms of physical storage but as results of computational procedures.
This has at least two possibilities for users: the ability to determine the provenance of data, i.e. determines
how it was produced and if it were valid, and the ability to reuse the data products in future experiments
where the same procedures with the same inputs are involved. Pegasus [58] is a workflow management
system from the GriPhyN project which uses the VDG to reduce workflows by substituting previously
generated data wherever possible. A similar procedure is followed by Storage Resource Broker (SRB) [59]
which uses stored procedures in its SRB Matrix to reduce dataflow graphs. Therefore, data virtualization
isolates the users from the physical Data Grid environment.

Data virtualization is an important technology for creating a information-rich utility computing
environment that is able to provide its users with the following abilities:

� Seamlessly discover and use available data services
� Plan ahead for future requirements and take preemptive action
� Create dynamic applications by combining services.

In such an environment, QoS parameters associated with a data service play an important role in data
service discovery. Such parameters include the size of the data, permissions associated with access and
modification, available bandwidth to storage locations, and relevance. Relevance of data can be
determined from the provenance data that describes the procedures used for producing the data. Planning,
scheduling, and reserving resources in advance is conducted by resource brokers that take QoS parameters
into account while selecting data sources and storage locations.

3.5. Workflow Scheduling
With the advent of Grid and application technologies, scientists and engineers are building more and more
complex applications to manage and process large data sets, and execute scientific experiments on
distributed resources. Such application scenarios require means for composing and executing complex
workflows. Workflows are concerned with the automation of procedures whereby files and data are passed
between participants according to a defined set of rules to achieve an overall goal [60]. A workflow
management system defines, manages and executes workflows automatically on computing resources.
Imposing the workflow paradigm for application composition on Grids offers several advantages [61] such
as:

� Ability to build dynamic applications which orchestrate distributed resources.
� Utilization of resources that are located in a particular domain to increase throughput or reduce

execution costs.
� Execution spanning multiple administrative domains to obtain specific processing capabilities.
� Integration of multiple teams involved in managing different parts of the experiment workflow,

thus promoting inter-organizational collaborations.

QoS support in workflow management is required by many workflow applications. For example, a
workflow application for maxillo-facial surgery planning [62] needs results to be delivered before a certain

 15

time. However, QoS requirements cannot be guaranteed in a conventional Grid where resources provide
only best effort services. Therefore, there is a need to have Utility Grids that allow users to negotiate with
service providers on a certain service agreement with the requested QoS.

In general, scheduling workflows on Utility Grids is guided by users’ QoS expectations. Workflow
management systems are required to allow the user to specify their requirements, along with the
descriptions of tasks and their dependencies using the workflow specification. In general, QoS constraints
express the preferences of users and are essential for efficient resource allocation. QoS constraints can be
classified into five dimensions [63]: time, cost, fidelity, reliability and security. Time is a basic measure of
performance. For workflow systems, it refers to the total time required for completing the execution of a
workflow. Cost represents the cost associated with the execution of workflows, including the cost of
managing workflow systems and usage charge of Grid resources for processing workflow tasks. Fidelity
refers to the measurement related to the quality of the output of workflow execution. Reliability is related
to the number of failures for execution of workflows. Security refers to confidentiality of the execution of
workflow tasks and trustworthiness of resources.

Several new issues arise from scheduling QoS constrained workflows on Utility Grids:

� In general, users would like to specify a QoS constraint for the entire workflow. It is required that
the scheduler determines a QoS constraint for each task in the workflow, such that the global QoS
is satisfied.

� The scheduler is required to be adaptive to evaluate a proposed SLA and negotiate with a service
provider for one task with respect to its current accepted set of SLAs and expected return of
unscheduled tasks.

� The description language and monitoring mechanism for QoS based workflows will be more
complex as compared to traditional workflow scheduling.

To date, several efforts have been made towards QoS aware workflow management. Web Services
Agreement (WS-Agreement) [64] allows a resource provider and a consumer to create an agreement on the
expected service qualities between them. Grid Quality of Service Management (G-QoSm) [65] provides
Grid services which workflow schedulers can negotiate and reserve services based on certain quality levels.
The Vienna Grid Environment (VGE) [66] develops a dynamic negotiation model that facilitates workflow
schedulers to negotiate various QoS constraints with multiple service providers. It also extends the
Business Process Execution Language (BPEL) [67] to support QoS constraint expression. A QoS based
heuristic for scheduling workflow applications can be found in [68]. The heuristic attempts to assign the
task into least expensive computing resources based on assigned time constraint for the local task. A cost
based scheduling algorithm [69] minimizes the cost, while meeting the deadline of the workflow by
distributing the deadline for the entire workflow into sub-deadlines for each task. More recently, a budget
constrained workflow scheduling has been developed in [70]. It uses genetic algorithms to optimize
workflow execution time while meeting the user’s budget.

However, supporting QoS in scheduling of workflow applications is still at a very preliminary stage. There
is a need for many advanced capabilities in workflow systems and resource allocation such as support of
cyclic and conditional checking of workflow structure, adaptive scheduling based on dynamic negotiation
models, and advanced SLA monitoring and renegotiation.

3.6. Advanced Reservation
In existing Grid systems, incoming jobs to resources are either scheduled via Space-shared or Time-shared
mode. The Space-shared mode runs jobs based on their submission times; similar to First Come First Serve
(FCFS), whereas the Time-shared mode allows multiple executions of jobs; hence it behaves like a Round
Robin approach. With a Utility Grid, jobs can be prioritized based on users’ QoS by a resource scheduler.
However, a Utility Grid is not necessarily able to handle high priority jobs or guarantee reliable service.
Therefore, advance reservation needs to be introduced in a Utility Grid system to secure resources prior to
their execution.

Advanced Reservation (AR) is a process of requesting resources for use at a specific time in the future [71].
Common resources that can be reserved or requested are processors, memory, disk space and network

 16

bandwidth or a combination of any of those. The main advantage of AR is that it guarantees the availability
of resources to users and applications at specific times in the future. Hence, from the user's perspective:

� Jobs can be executed straight away at a specified time rather than being held up in a queue by
other jobs. This is a highly-desirable approach for executing workflow applications that have one
or more dependencies.

� Avoiding any dropouts in a network transfer which is not an option in multimedia streaming
applications such as video-conferencing.

Combining utility computing with AR allows resource providers to specify criteria and requirements of
usage. In addition, resource providers can match and satisfy user's QoS. Utility computing applies to
different stages of AR [72] as follows:

� Requesting a new reservation slot: A user asks a resource about the availability of a reservation
slot by giving details such as start time, duration time, and number of processors. A resource can
then either accept or reject the request (if the slot is already booked). Both the user and resource
can continue negotiating until they reach an agreement, i.e. to accept or not to accept.

� Modifying an existing reservation slot: A user or a resource can request to modify an existing
reservation slot. Modification is used as a way to shorten or extend the duration of a reservation.
If a user's jobs are running longer than expected, extending the duration time is needed to prevent
them from being preempted by a resource. A user can request to shorten a reservation if jobs have
finished, in order to save some costs.

� Canceling an existing reservation slot: A user or a resource can request to cancel an existing
reservation slot. However, this can be done only when both parties have agreed beforehand.
Canceling a reservation before it starts can easily be agreed to by a resource. However, some
resource providers may not allow the cancellation of a reservation once it has started.

3.7. Cooperative Virtual Organizations
The concept of virtual organization (VO) is crucial to the Grid. In current Grid collaborations, physical
organizations engage in projects and alliances such as joint ventures that require shared access to compute
and data resources provided by their members. The model adopted for such endeavors is that of a VO, in
which resource providers and users are organized in a structure that may comprise several physical
organizations. VOs may vary in several ways, such as scope, dynamism, and purpose, even though they
impose similar challenges regarding their formation, operation and dissolution [73].

Over the years, applications and compute and data resources have been virtualized to enable the utility
model for business processes. With regard to the creation of a VO, it may be assumed that a VO is formed
because of the need from a business process or some project. Despite the virtualization provided by Grid
technologies, organizations may have difficulties in expressing their needs and requirements to their
potential partners. Additional challenges are the selection of partners and the establishment of trust at a
level that allows the automated creation of VOs [74]. However, to enable the utility model in VOs, issues
regarding the responsive or even the automated creation of VOs need to be tackled.

The operational phase of a VO is also a complex task. Resource sharing in VOs is conditional and rules-
driven. Also, the relationship in some VOs is peer-to-peer. To complicate matters further, the collection of
participating entities is dynamic [26]. This scenario complicates tasks such as the negotiation of SLAs
among the participants of the VO or between the participants and the VO itself. Furthermore, the
reconciliation, management, and enforcement of resource usage control policies in the VO poses several
challenges as presented in [75]. For example, a simple model for providing resources as utilities in VOs
requires the presence of a trusted VO manager. Resource providers are committed to deliver services to the
VO according to contracts established with the VO manager. The manager is therefore responsible for
assigning quotas of these resources to VO groups and users based on some VO policy. Users are allowed to
use services according to these quotas and the VO policy. However, in this context, the delivery of compute
and data resources in a utility-model to VO users and groups makes tasks such as enforcement of policies
in a VO level and accounting difficult.

A simple model in a VO that follows a peer-to-peer sharing approach is of best effort, in which “you give
what you can and get what others can offer”. A more elaborate model in which the presence of a VO

 17

manager does not exist allows the delivery of services following a “you get what give” approach [76].
Other approaches require multilateral agreements among the members of the VO and give rise to
challenges in the enforcement of resource usage policies, as described before.

Current works have not focused on aspects related to the dissolution of VOs, since this problem involves
more legal and social issues rather than technical issues. Hence, the delivery of compute resources as a
utility in VOs requires the investigation and solving of these problems related to various aspects of a VO.
Automation and responsiveness are also required in every stage of the lifecycle of a VO.

4. Industrial Solutions for Utility Computing
Various commercial vendors have launched industrial solutions to support utility computing. Competing
marketing terms are used by different vendors even though they share the same vision of providing utility
computing. This section discusses four major industrial solutions, as listed in Table 2: HP’s Adaptive
Enterprise, IBM’s E-Business On Demand, Oracle’s On Demand, and Sun Microsystems’s Sun Grid. All
four solutions use Grids as the core enabling technology.

Table 2. Some major industrial solutions for utility computing.

Vendor Solution and Website Brief Description Core Enabling Technology and
Website

HP Adaptive Enterprise

http://www.hp.com/go/adaptive

Simplifies, standardizes,
modularizes, and integrates
business processes and
applications with IT
infrastructures to adapt
effectively in a changing
business environment.

Grids

http://www.hp.com/go/grid

IBM E-Business On Demand

http://www.ibm.com/ondemand

Performs on demand
business processes that
include research and
development, engineering
and product design,
business analytics, and
enterprise optimization.

Grids

http://www.ibm.com/grid

Oracle On Demand

http://www.oracle.com/ondemand

Standardizes and
consolidates servers and
storage resources to
automate IT process
management.

Grids

http://www.oracle.com/grid

Sun
Microsystems

Sun Grid

http://www.sun.com/service/sungrid

Offers computing power
pay-as-you-go service utility
by charging users $1 for
every hour of processing.

Grids

http://www.sun.com/software/grid

4.1. HP Adaptive Enterprise
The vision of HP’s Adaptive Enterprise [77] is to synchronize the business and IT processes in an
enterprise in order to allow it to benefit from changes in market demands. IT processes are coordinated
through the Adaptive Enterprise architecture which comprises two dimensions: IT management and IT
service capabilities.

The IT management dimension involves:

� IT business management: Long-term IT strategies such as asset management, customer and
supplier relationship management, and project portfolio management need to be developed.

� Service delivery management: Various operational aspects of service delivery such as availability,
cost, capacity, performance, security, and quality need to be considered.

� Service delivery: IT services need to be provided by highly automated systems to users.

 18

The IT service capabilities dimension that is addressed under both service delivery management and
service delivery in the IT management dimension consists of:

� Business services: Represent top-level services related to business processes such as the
composition of workflows.

� Information services: Consolidate and manipulate information for business services that are
independent from application services.

� Application services: Automate and handle the processing of applications.
� Infrastructure services: Create a common infrastructure platform to host the application,

information, and business services.

The Adaptive Enterprise architecture also defines four design principles that are to be realized for an
enterprise to become more adaptive:

� Simplification: Complex IT environments can be streamlined through application integration,
process automation, and resource virtualization to facilitate easier management and faster
response.

� Standardization: Standardized architectures and processes enable easier incorporation of new
technologies, improves collaboration and saves cost.

� Modularity: Smaller reusable components can be deployed faster and more easily, increasing
resource sharing and reducing cost.

� Integration: Dynamic linking of business processes, applications, and infrastructure components
enhance agility and cost efficiency.

Grid technologies enable the successful implementation of the Adaptive Enterprise architecture to link IT
infrastructure dynamically to business processes by fulfilling the following design rules:

� Service-oriented architecture (SOA): Grid services are defined based on OGSA [55], an open
standard that leverages web services to allow large-scale collaboration across the Internet.

� Virtualization: Grids harness a large pool of resources that can be shared across applications and
processes to meet business demands.

� Model-based automation: Grid technologies integrate standalone resources and automate services,
thus simplifying the process of deployment, management, and maintenance.

HP customizes the Globus Toolkit [34] as the Grid infrastructure for its platforms. The Grid solutions
offered by HP and its partners are listed in Table 3.

Table 3. HP and its partners’ Grid solutions.

HP Solutions and Website HP Partner Solutions and Website

� Management Solutions: OpenView

http://www.hp.com/go/openview

� Server Solutions: BladeSystem

http://www.hp.com/go/bladesystem

� Storage Solutions: StorageWorks Grid

http://www.hp.com/go/storageworksgrid

Infrastructure:

� Application Infrastructure: DataSynapse

http://www.datasynapse.com

� Grid Infrastructure: United Devices

http://www.ud.com

� Resource Management: Axceleon

http://www.axceleon.com

� Workflow Management: TurboWorx

http://www.turboworx.com

� Workload Management: PBS Pro

http://www.altair.com

� Workload Management: Platform

http://www.platform.com

 19

4.2. IBM E-Business On Demand
IBM’s E-business On Demand [78] aims to improve the competitiveness and responsiveness of businesses
through continuous innovation in products and services. To achieve this aim, E-business On Demand
optimizes the following business processes:

� Research and development: New innovative products and services need to be researched and
developed quickly to make an impact in the highly competitive market.

� Engineering and product design: Products and services need to be well-engineered and designed
to meet customers’ requirements.

� Business analytics: Swift and accurate business decisions need to be made based on market
performance data in order to remain a market leader.

� Enterprise optimization: Standalone resources at various global branches need to be integrated so
that workload can be distributed evenly and resources utilized fully to satisfy demand.

E-business On Demand targets numerous industries that include:

� Automotive and aerospace: Collaborative design and data-intensive testing.
� Financial services: Complex scenario simulation and decision-making.
� Government: Coordinated operation across civil and military divisions and agencies.
� Higher education: Advanced compute and data-intensive research.
� Life sciences: Biological and chemical information analysis and decoding.

Table 4. IBM and its partners’ Grid solutions.

IBM Solutions and Website IBM Partner Solutions and Website

� Application Server: Websphere

http://www.ibm.com/websphere

� Resource Provisioning: Tivoli

http://www.ibm.com/tivoli

� System Server: eServer

http://www.ibm.com/eserver

Infrastructure:

� Application Infrastructure: DataSynapse

http://www.datasynapse.com

� Grid Infrastructure: United Devices

http://www.ud.com

� Grid Infrastructure: Univa

http://www.univa.com

� Workload Management: PBS Pro

http://www.altair.com

� Workload Management: Platform

http://www.platform.com

Application:

� Document Production: Sefas

http://www.sefas.com

� Grid Deployment: SAS

http://www.sas.com/grid

� Risk Management: Searchspace

http://www.searchspace.com

IBM applies four core enabling technologies for E-Business On Demand: Grid computing, autonomic
computing, open standards, and integration technologies. Grid technologies acts as the key component to
provide the flexibility and efficiency required for various E-Business On Demand environments:

� Research and development: Highly compute- and data-intensive research problems can be solved
with lower cost and shorter time by harnessing extra computational and data resources in a Grid.

� Engineering and product design: Industry partners are able to collaborate by sharing resources and
coordinating engineering and design processes through VOs and open standards-based Grid
architecture.

 20

� Business analytics: Heavy data analysis and processing can be sped up with extra computational
and data resources so that results are derived in time for decision-making.

� Enterprise optimization: Virtualization and replication using Grid technologies ensures that under-
utilized resources are not wasted, but are instead utilized for backup and recovery purposes.

The core component that IBM deploys for its Grid infrastructure is called the IBM Grid Toolbox which is
an enhanced version of the Globus Toolkit [34]. Table 4 lists Grid solutions that are available by IBM and
its partners. IBM provides a general integrated Grid solution offering called Grid and Grow for interested
customers to easily deploy and sample Grid technologies. In addition, it has created customized Grid
offerings for specific industries and applications to drive E-business On Demand.

4.3. Oracle On Demand
Oracle’s On Demand aims to enable customers to focus on more strategic business objectives by improving
their IT performance and maximize the return on investment in four areas:

� Quality: A comprehensive and configurable set of services specifically designed to improve IT
performance will be continuously delivered.

� Cost: IT expenses are more easily predicted and lower as there is no need to spend on additional
unexpected repairs and upgrades.

� Agility: The offered service is flexible and can be tailored to satisfy changing complexities,
environments, and business needs.

� Risk: Service-level commitments guarantees problem resolution, enhancements, and expansions to
maximize accountability.

Oracle’s On Demand is implemented using Grid solutions through three basic steps:

� Consolidation: Hardware, applications, and information can be shared across multiple data
centers.

� Standardization: Using common infrastructure, application, and information services bridges the
gap between various servers, storages, and operating systems.

� Automation: Less system administration work is required as multiple resources can be managed
concurrently and more easily.

Table 5. Oracle and its partners’ Grid solutions.

Oracle Solutions and Website Oracle Partner Solutions and Website

� Data Provisioning: Oracle Database 10g

http://www.oracle.com/database

� Management Solutions: Oracle Fusion Middleware

http://www.oracle.com/middleware

� Resource Provisioning: Oracle Enterprise Manager 10g

http://www.oracle.com/technology/products/oem

Infrastructure:

� Grid Infrastructure: Apple

http://www.apple.com

� Grid Infrastructure: Egenera

http://www.egenera.com

� Grid Infrastructure: HP

http://www.hp.com

� Grid Infrastructure: Network Appliance

http://www.netapp.com

Application:

� Database Management: GridApp

http://www.gridapp.com

� Database Management: Grid-Tools

http://www.grid-tools.com

� Enterprise Automation: ORSYP

http://www.orsyp.com

 21

Table 5 shows the Grid solutions from Oracle and its partners. Oracle Database 10g is the first database
designed for Grid computing and offers data provisioning capabilities, such as detaching part of a database
and attaching it to another database without unloading and reloading.

4.4. Sun Microsystems Sun Grid
Sun Microsystems’s Sun Grid aims to provide affordable commodity-based computing power pay-as-you-
go service. Sun Grid currently supports three types of compute utility service (see Table 6 for comparison):

� Compute utility: A standard offering that provides instant deployment for anyone with Internet
access at $1 per hour of processing.

� Commercial utility: A single tenant standard offering in a multi tenant hosting center that targets
medium and large enterprises.

� Variable cost infrastructure: A customized modular offering and single tenant utility model for
large enterprises and system integrators.

Table 6. Comparison of Sun Grid compute utility services.

Comparison Sun Grid Compute Utility Services

 Compute Utility Commercial Utility Variable Cost Infrastructure

Access Portal Dedicated Customer or system
integrator hosted

Availability Instantaneous Short notice Longer term contract

Scheduling No reservation Time-based reservation Dedicated or time-based
reservation

Pricing All-inclusive $1/CPU-hour Negotiated $/CPU-hour Negotiated

Business Terms Standard Service level Capacity provisioning

Technology Solaris 10 x64 Solaris 10 x64 or Redhat
Linux

Menu of options

Storage 10 GB standard Customer defined Menu of options

The Sun Grid compute utility [79] provides a golden opportunity for non-IT users to make use of utility
computing by providing a simple and easy to use web interface that hides the complex Grid technologies
involved. Given this assumption of a simple utility computing environment, the Sun Grid compute utility
has several limitations:

� Submitted applications must be able to execute on Solaris 10 operating system.
� Submitted applications must be self-contained and scripted to work with Sun N1 Grid Engine [80]

software without requiring interactive access.
� Submitted applications has to be implemented using standard object libraries included with Solaris

10 Operating system or user libraries packaged with the executable.
� The application can obtain finer control over compute resources through the interfaces provided

by the Sun N1 Grid Engine software.
� The total maximum size of applications and data must be less than 10 GBytes.
� Applications and data can only be uploaded through the web interface and may be packaged into

compressed ZIP files of less than 100 MBytes each.

Grid technologies are employed for the Sun Grid compute utility with the following compute node
configuration:

� 8 GBytes of memory.
� Solaris 10 operating system.
� Sun N1 Grid Engine 6 software for resource management of compute nodes.
� Grid network infrastructure built on Gigabit Ethernet.

 22

� Web-based portal for users to submit jobs and upload data.
� 10 GBytes of storage space for each user.

Industries that are targeted by the Sun Grid compute utility consists of:

� Energy: Reservoir simulations and seismic processing.
� Entertainment/Media: Digital content creation, animation, rendering, and digital asset

management.
� Financial services: Risk analysis and Monte Carlo simulations.
� Government education: Weather analysis and image processing.
� Health sciences: Medical imaging, bioinformatics, and drug development simulations.
� Manufacturing: Electronic design automation, mechanical computer-aided design, computational

fluid dynamics, crash-test simulations, and aerodynamic modeling.

Sun Microsystems, Gridwise Tech, and the Globus project have been collaborating in the joint
development of interfaces between Sun Grid solutions and the Globus Toolkit [81]. Table 7 shows Grid
solutions that are developed by Sun Microsystems and its partners.

Table 7. Sun Microsystems and its partners’ Grid solutions.

Sun Microsystems Solutions and Website Sun Microsystems Partner Solutions and Website

� Resource Management: N1

http://www.sun.com/software/n1gridsystem

Infrastructure:

� Application Server: GigaSpaces

http://www.gigaspaces.com

� Autonomic Processing: Paremus

http://www.paremus.com

� Workload Management: Platform

http://www.platform.com

Service Management:

� Collaborative Solutions: SAP

http://www.sap.com

� Database Solutions: Oracle

http://www.oracle.com

� Service-Oriented Solutions: BEA

http://www.bea.com

Software As a Service:

� Pricing and Risk Solutions: CDO2

http://www.cdo2.com

5. Summary
In this chapter, the utility computing model and its vision of being the next generation of IT evolution is
introduced. The utility computing model is significantly different from traditional IT models, and thus
requires organizations to amend their existing IT procedures and operations towards this outsourcing model
so as to save costs and improve quality. There is also increasing emphasis on adopting Grid computing
technologies to enable utility computing environments.

This chapter has focused on the potential of Grids as utility computing environments. A reference service-
oriented architecture of Utility Grids has been discussed, along with how services are assembled on
demand in the Utility Grid. The challenges involved in utility-based resource allocation at various levels of
the Utility Grid are then examined in detail. With commercial vendors rapidly launching utility computing

 23

solutions, industrial solutions by three pioneer vendors (HP, IBM, and Sun Microsystems) and their
realization through Grid technologies are also presented.

For recent advances in Grid computing technologies and applications, readers are recommended to browse
the proceedings of CCGrid [82], Grid [83], and e-Science [84] conference series organized by the IEEE
Technical Committee on Scalable Computing (TCSC) [85].

6. Acknowledgements
The authors thank Hussein Gibbins and the anonymous reviewers for their comments. This work is
partially supported through the Australian Research Council (ARC) Discovery Project grant.

7. Glossary
Adaptive Enterprise – An organization that is able to adjust and benefit according to the changes in its
operating environment.

Grid Computing – A model allowing organizations to access a large quantity of remotely distributed
computing resources on demand.

Market-based Resource Allocation – Assignment of resources based on market supply and demand from
providers and users.

Middleware – Software designed to interface and link separate software and/or hardware.

On Demand Computing – Computing services that can be accessed when required by the user.

Service Level Agreement (SLA) – A contract agreed upon between a service provider and a user which
formally specifies service quality that the provider is required to provide.

Service-Oriented Architecture (SOA) – An architectural framework for the definition of services that are
able to fulfill the requirements of users.

Utility Computing – A model whereby service providers offer computing resources to users only when the
users need them and charges the users based on usage.

Virtual Organization (VO) – A temporary arrangement formed across physically dispersed departments and
organizations with a common objective to facilitate collaboration and coordination.

8. References
[1] Rajkumar Buyya (editor), High Performance Cluster Computing: Architectures and Systems, Volume 1,

Prentice Hall, 1999.
[2] Gregory F. Pfister, In Search of Clusters, Second Edition, Prentice Hall, 1998.
[3] Ian Foster and Carl Kesselman (editors), The Grid 2: Blueprint for a New Computing Infrastructure, Morgan

Kaufmann, 2003.
[4] Michael A. Rappa, “The utility business model and the future of computing services,” IBM Systems Journal,

vol. 43, no. 1, 2004, pp. 32-42.
[5] Leonard Kleinrock, “A vision for the Internet,” ST Journal of Research, vol. 2, no. 1, November 2005, pp. 4-5.
[6] Jeanne W. Ross and George Westerman, “Preparing for utility computing: The role of IT architecture and

relationship management,” IBM Systems Journal, vol. 43, no. 1, 2004, pp. 5-19.
[7] META Group, “The Adaptive Organization: An Examination of On Demand Computing,” META Group

Multiclient Study, May 2004.
[8] Ian Foster, Carl Kesselman, and Steven Tuecke, “The Anatomy of the Grid: Enabling Scalable Virtual

Organizations,” The International Journal of High Performance Computing Applications, vol. 15, no. 3, Fall
2001, pp. 200-222.

[9] Rajkumar Buyya, Toni Cortes, and Hai Jin, “Single System Image,” The International Journal of High
Performance Computing Applications, vol. 15, no. 2, Summer 2001, pp. 124-135.

 24

[10] Klaus Krauter, Rajkumar Buyya, and Muthucumaru Maheswaran, “A taxonomy and survey of grid resource
management systems for distributed computing,” Software: Practice and Experience, vol. 32, no. 2, February
2002, pp. 135-164.

[11] TeraGrid, http://www.teragrid.org (accessed November 2006).
[12] ChinaGrid, http://www.chinagrid.edu.cn (accessed November 2006).
[13] APACGrid, http://www.apac.edu.au (accessed November 2006).
[14] LHCGrid, http://www.cern.ch/lcg (accessed November 2006).
[15] GriPhyN, http://www.griphyn.org (accessed November 2006).
[16] NetSolve/GridSolve, http://icl.cs.utk.edu/netsolve (accessed November 2006).
[17] AccessGrid, http://www.accessgrid.org (accessed November 2006).
[18] Mario Cannataro and Domenico Talia, The Knowledge Grid, Communications of the ACM, vol. 46, no. 1, 2003,

pp. 89-93.
[19] EU Data Mining Grid, http://www.datamininggrid.org (accessed November 2006).
[20] Rajkumar Buyya and Srikumar Venugopal, “The Gridbus Toolkit for Service Oriented Grid and Utility

Computing: An Overview and Status Report”, Proceedings of the First IEEE International Workshop on Grid
Economics and Business Models (GECON 2004, April 23, 2004, Seoul, Korea), 19-36pp, ISBN 0-7803-8525-X,
IEEE Press, New Jersey, USA.

[21] Sven Graupner, Jim Pruyne, and Sharad Singhal, “Making the Utility Data Center a Power Station for the
Enterprise Grid”, HP Labs Technical Report, Palo Alto, USA, 2003. http://www.hpl.hp.com/techreports/2003/

[22] Rajkumar Buyya, David Abramson, and Srikumar Venugopal, “The Grid Economy,” Proceedings of the IEEE,
vol. 93, no. 3, March 2005, pp. 698-714.

[23] Message Passing Interface (MPI) Forum, http://www.mpi-forum.org (accessed November 2006).
[24] Bill Nitzberg and Virginia Lo, “Distributed Shared Memory: A Survey of Issues and Algorithms”, IEEE

Computer, vol. 24, no. 8, 1991, pp.52-60.
[25] Joshy Joseph and Craig Fellenstein, Grid Computing, Prentice Hall, 2004.
[26] Joshy Joseph, Mark Ernest, and Craig Fellenstein, “Evolution of grid computing architecture and grid adoption

models,” IBM Systems Journal, vol. 43, no. 4, 2004, pp. 624-645.
[27] Melissa J. Buco, Rong N. Chang, Laura Z. Luan, Christopher Ward, Joel L. Wolf, and Philip S. Yu, “Utility

computing SLA management based upon business objectives,” IBM Systems Journal, vol. 43, no. 1, 2004, pp.
159-178.

[28] Jeffrey O. Kephart and David M. Chess, “The Vision of Autonomic Computing,” IEEE Computer, vol. 36, no.
1, January 2003, pp. 41-50.

[29] Richard Murch, Autonomic Computing, Prentice Hall, 2004.
[30] Chris Kenyon and Giorgos Cheliotis, “Elements of Financial Risk Management for Grid and Utility

Computing,” Abderrahim Labbi (editor), Handbook of Integrated Risk Management for E-Business: Measuring,
Modeling, and Managing Risk, Chapter 8, pp. 169-191, J. Ross Publishing, 2005.

[31] Giuseppe A. Paleologo, “Price-at-Risk: A methodology for pricing utility computing services,” IBM Systems
Journal, vol. 43, no. 1, 2004, pp. 20-31.

[32] Platform Computing, The Politics of Grid, http://www2.platform.com/adoption/politics (accessed November
2006).

[33] IBM developerWorks, Six Strategies for Grid Application Enablement,
http://www.ibm.com/developerworks/grid/library/gr-enable (accessed November 2006).

[34] The Globus Alliance, The Globus Toolkit, http://www.globus.org/toolkit (accessed November 2006).
[35] David Abramson, Jon Giddy, and Lew Kotler, “High Performance Parametric Modeling with Nimrod/G: Killer

Application for the Global Grid?” Proceedings of the 14th International Parallel and Distributed Processing
Symposium (IPDPS 2000), Cancun, Mexico, May 2000, pp. 520-528.

[36] The Gridbus Project, The Gridbus Toolkit, http://www.gridbus.org/middleware (accessed November 2006).
[37] Rong Ge, Xizhou Feng, and Kirk W. Cameron, “Performance-constrained Distributed DVS Scheduling for

Scientific Applications on Power-aware Clusters,” Proceedings of the 2005 ACM/IEEE Supercomputing
Conference (SC 2005), Seattle, WA, November 2005.

[38] Chee Shin Yeo and Rajkumar Buyya, “A Taxonomy of Market-based Resource Management Systems for
Utility-driven Cluster Computing,” Software: Practice and Experience, vol. 36, no. 13, 10 November 2006, pp.
1381-1419.

[39] Stephen D. Kleban and Scott H. Clearwater, “Computation-at-Risk: Assessing Job Portfolio Management Risk
on Clusters,” Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS
2004), Santa Fe, NM, April 2004.

[40] David E. Irwin, Laura E. Grit and Jeffrey S. Chase, “Balancing Risk and Reward in a Market-based Task
Service,” Proceedings of the 13th International Symposium on High Performance Distributed Computing
(HPDC13), Honolulu, HI, June 2004, pp. 160-169.

[41] Mohammad Islam, Pavan Balaji, Ponnuswamy Sadayappan, and Dhabaleswar K. Panda, “Towards Provision of
Quality of Service Guarantees in Job Scheduling,” Proceedings of the 6th International Conference on Cluster
Computing (Cluster 2004), San Diego, CA, September 2004, pp. 245-254.

 25

[42] Chee Shin Yeo and Rajkumar Buyya, “Service Level Agreement based Allocation of Cluster Resources:
Handling Penalty to Enhance Utility,” Proceedings of the 7th International Conference on Cluster Computing
(Cluster 2005), Boston, MA, September 2005.

[43] Florentina I. Popovici and John Wilkes, “Profitable services in an uncertain world,” Proceedings of the 18th
Conference on Supercomputing (SC 2005), Seattle, WA, November 2005.

[44] Walter B. Ligon III and Rob Ross, “PVFS: A Parallel File System for Linux Clusters,” Thomas Sterling
(editor), Beowulf Cluster Computing with Linux, pp. 391-430, MIT Press, 2001.

[45] Jason Barkes, Marcelo R. Barrios, Francis Cougard, Paul G. Crumley, Didac Marin, Hari Reddy, and
Theeraphong Thitayanun, “GPFS: A Parallel File System,” IBM Redbook SG24-5165-00, April 1998.

[46] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, “The Google File System,” Proceedings of the 19th
ACM Symposium on Operating Systems Principles (SOSP 2003), Bolton Landing, NY, October 2003, pp. 29-
43.

[47] Brian F. Cooper and Hector Garcia-Molina, “Peer-to-Peer Data Trading to Preserve Information,” ACM
Transactions on Information Systems, vol. 20, no. 2, April 2002, pp. 133-170.

[48] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton, Dennis Geels, Ramakrishna
Gummadi, Sean Rhea, Hakim Weatherspoon, Westley Weimer, Chris Wells, and Ben Zhao, “OceanStore: An
Architecture for Global-Scale Persistent Storage,” Proceedings of the 9th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS 2000), Cambridge, MA,
November 2000, pp. 190-201.

[49] Gernot Heiser, Kevin Elphinstone, Jerry Vochteloo, Stephen Russell, and Jochen Liedtke, “The Mungi Single-
Address-Space Operating System,” Software Practice and Experience, vol. 28, no. 9, 25 July 1998, pp. 901-
928.

[50] Bryce Wilcox-O’Hearn, “Experiences Deploying a Large-Scale Emergent Network,” Proceedings of the 1st
International Workshop on Peer-to-Peer Systems (IPTPS 2002), Lecture Notes in Computer Science (LNCS)
2429/2002, Cambridge, MA, March 2002, pp. 104-110.

[51] Martin Placek and Rajkumar Buyya, “Storage Exchange: A Global Trading Platform for Storage Services”,
Proceedings of the 12th International European Conference on Parallel Computing (Euro-Par 2006), Lecture
Notes in Computer Science (LNCS), Dresden, Germany, August 2006.

[52] Sudharshan S. Vazhkudai, Xiaosong Ma, Vincent W. Freeh, Jonathan W. Strickland, Nandan Tammineedi, and
Stephen L. Scott, “FreeLoader: Scavenging Desktop Storage Resources for Scientific Data,” Proceedings of the
18th Supercomputing Conference (SC 2005), Seattle, WA, November 2005.

[53] David Abramson, Rajkumar Buyya, and Jonathan Giddy, “A computational economy for Grid computing and
its implementation in the Nimrod-G resource broker,” Future Generation Computer Systems, vol. 18, no. 8,
October 2002, pp. 1061-1074.

[54] Srikumar Venugopal, Rajkumar Buyya, and Lyle Winton, “A Grid service broker for scheduling e-Science
applications on global data Grids,” Concurrency and Computation: Practice and Experience, vol. 18, no. 6,
May 2006, pp. 685-699.

[55] Open Grid Forum, The Open Grid Services Architecture, http://forge.gridforum.org/projects/ogsa-wg (accessed
November 2006).

[56] Mario Antonioletti, Shannon Hastings, Amy Krause, Stephen Langella, Simon Laws, Susan Malaika, and
Norman W. Paton, “Web Services Data Access and Integration – The XML Realization (WS-DAIX),” GGF
DAIS Working Group Informational Draft, September 2004.

[57] Ian Foster, Jens Vöckler, Michael Wilde, and Yong Zhao, “The Virtual Data Grid: A New Model and
Architecture for Data-Intensive Collaboration,” Proceedings of the 1st Conference on Innovative Data Systems
Research (CIDR 2003), Asilomar, CA, January 2003.

[58] Ewa Deelman, James Blythe, Yolanda Gil, and Carl Kesselman, “Workflow Management in GriPhyN,” Jarek
Nabrzyski, Jennifer M. Schopf, and Jan Weglarz (editors), Grid Resource Management: State of the Art and
Future Trends, Chapter 7, pp. 99-117, Kluwer Academic Publishers, 2003.

[59] Reagan W. Moore, Arcot Rajasekar, and Michael Wan, “Data Grids, Digital Libraries and Persistent Archives:
An Integrated Approach to Sharing, Publishing, and Archiving Data,” Proceedings of the IEEE, vol. 93, no. 3,
March 2005, pp. 578-588.

[60] David Hollinsworth, “The Workflow Reference Model,” The Workflow Management Coalition Specification,
Document Number TC00-1003, January 1995.

[61] Daniel P. Spooner, Junwei Cao, Stephen A. Jarvis, Ligang He, and Graham R. Nudd, “Performance-Aware
Workflow Management for Grid Computing,” The Computer Journal, vol. 48, no. 3, 2005, pp. 347-357.

[62] Guntram Berti, Siegfried Benkner, John W. Fenner, Jochen Fingberg, Guy Lonsdale, Stuart E. Middleton, and
Mike Surridge, “Medical Simulation Services via the Grid”, Proceedings of the 1st HealthGRID Conference
(HealthGRID 2003), Lyon, France, January 2003.

[63] Jia Yu and Rajkumar Buyya, “A Taxonomy of Workflow Management Systems for Grid Computing,” Journal
of Grid Computing, vol. 3, no. 3-4, September 2005, pp. 171-200.

 26

[64] Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko Ludwig, Jim Pruyne, John Rofrano, Steve
Tuecke, and Ming Xu, “Web Services Agreement Specification (WS-Agreement) Version 1.1,” Draft 18, GGF
GRAAP Working Group, May 2004.

[65] Rashid J. Al-Ali, Kaizar Amin, Gregor von Laszewski, Omer F. Rana, David W. Walker, Mihael Hategan, and
Nestor Zaluzec, “Analysis and Provision of QoS for Distributed Grid Applications”, Journal of Grid
Computing, vol. 2, no. 2, June 2004, pp. 163-182.

[66] Siegfried Benkner, Ivona Brandic, Gerhard Engelbrecht, and Rainer Schmidt, “VGE - A Service-Oriented Grid
Environment for On-Demand Supercomputing”, Proceedings of the 5th International Workshop on Grid
Computing (Grid 2004), Pittsburgh, PA, USA, November 2004, pp. 11-18.

[67] Ivona Brandic, Siegfried Benkner, Gerhard Engelbrecht, and Rainer Schmidt, “QoS Support for Time-Critical
Grid Workflow Applications”, Proceedings of the 1st International Conference on e-Science and Grid
Computing (e-Science 2005), Melbourne, Australia, December 2005, pp. 108-115.

[68] Daniel A. Menascé and Emiliano Casalicchio, “A Framework for Resource Allocation in Grid Computing,”
Proceedings of the 12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunications Systems (MASCOTS 2004), Volendam, Netherlands, October 2004, pp. 259-267.

[69] Jia Yu, Rajkumar Buyya, and Chen Khong Tham, “Cost-based Scheduling of Scientific Workflow Applications
on Utility Grids”, Proceedings of the 1st International Conference on e-Science and Grid Computing (e-Science
2005), Melbourne, Australia, December 2005, pp. 140-147.

[70] Jia Yu and Rajkumar Buyya, “A Budget Constrained Scheduling of Workflow Applications on Utility Grids
using Genetic Algorithms”, Workshop on Workflows in Support of Large-Scale Science (WORKS), Proceedings
of the 15th International Symposium on High Performance Distributed Computing (HPDC 2006), Paris, France,
June 2006.

[71] Warren Smith, Ian Foster, and Valerie Taylor, “Scheduling with Advanced Reservations,” Proceedings of the
14th International Parallel and Distributed Processing Symposium (IPDPS 2000), Cancun, Mexico, May 2000,
pp. 127-132.

[72] Anthony Sulistio and Rajkumar Buyya, “A Grid Simulation Infrastructure Supporting Advance Reservation,”
Proceedings of the 16th International Conference on Parallel and Distributed Computing and Systems (PDCS
2004), Cambridge, MA, November 2004, pp. 1-7.

[73] Jigar Patel, W. T. Luke Teacy, Nicholas R. Jennings, Michael Luck, Stuart Chalmers, Nir Oren, Timothy J.
Norman, Alun Preece, Peter M. D. Gray, Gareth Shercliff, Patrick J. Stockreisser, Jianhua Shao, W. Alex Gray,
Nick J. Fiddian, and Simon Thompson, “Agent-based Virtual Organisations for the Grid,” International Journal
of Multi-Agent and Grid Systems, vol. 1, no. 4, 2005, pp. 237-249.

[74] Theo Dimitrakos, David Golby, and Paul Kearney, “Towards a Trust and Contract Management Framework for
Dynamic Virtual Organisations,” Proceedings of the eChallenges Conference (eChallenges 2004), Vienna,
Austria, October 2004.

[75] Catalin L. Dumitrescu, Michael Wilde, and Ian Foster, “A Model for Usage Policy-based Resource Allocation
in Grids,” Proceedings of the 6th International Workshop on Policies for Distributed Systems and Networks
(POLICY 2005), Stockholm, Sweden, June 2005, pp. 191-200.

[76] Glenn Wasson and Marty Humphrey, “Policy and Enforcement in Virtual Organizations,” Proceedings of the
4th International Workshop on Grid Computing (Grid 2003), Phoenix, AZ, November 2003, pp. 125-132.

[77] HP, “Adaptive Enterprise: Business and IT synchronized to capitalize on change,” HP White Paper 4AA0-
0760ENW, June 2005.

[78] IBM, “Unleash the power of e-business on demand,” IBM White Paper G522-2580-00, October 2003.
[79] Sun Microsystems, “Sun Grid Compute Utility Reference Guide,” Part No. 819-5131-10, January 2006.
[80] Sun Microsystems, Sun N1 Grid Engine 6, http://www.sun.com/software/gridware (accessed November 2006).
[81] GridwiseTech, Grid Engine-Globus Toolkit adapter, http://www.gridwisetech.com/ge-gt (accessed November

2006).
[82] International Symposium on Cluster Computing and the Grid (CCGrid), http://www.buyya.com/ccgrid

(accessed November 2006).
[83] International Conference on Grid Computing (Grid), http://www.gridcomputing.org (accessed November 2006).
[84] International Conference on e-Science and Grid Computing (e-Science), http://www.escience-meeting.org

(accessed November 2006).
[85] IEEE Technical Committee on Scalable Computing (TCSC), http://www.ieeetcsc.org (accessed November

2006).

