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Abstract— Advancement of container technology (e.g. Docker, 

LXC, etc.) transformed the virtualization concept by providing 

a lightweight alternative to hypervisors. Docker has emerged 

as the most popular container management tool. Recent 

research regarding the comparison of container with 

hypervisor and bare-metal demonstrates that the container can 

accomplish bare-metal performance in almost all case. 

However, the current literature lacks an in-depth study on the 

experimental evaluation for understanding the performance 

interference between microservices that are hosted within a 

single or across multiple containers. In this paper, we have 

presented the experimental study on the performance 

evaluation of Docker containers running heterogeneous set of 

microservices concurrently. We have conducted a 

comprehensive set of experiments following CEEM (Cloud 

Evaluation Experiment Methodology) to measure the 

interference between containers running either competing or 

independent microservices. We have also considered the effects 

of constraining the resources of a container by explicitly 

specifying the cgroups. We have evaluated the performance of 

containers in terms of inter-container (caused by two 

concurrent executing containers) and intra-container (caused 

between two microservices executing inside a container) 

interference which is almost neglected in the current literature. 

The evaluation results can be utilized to model the interference 

effect for smart resource provisioning of microservices in the 

containerized environment. 
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Cloud Service Evaluation 

I.  INTRODUCTION 

Virtualization is the core component of cloud computing 
that allows multiple tenants to run their heterogeneous 
applications in an isolated environment. It provides 
numerous advantages including heterogeneous consolidation, 
easy allocation, reduced failure probability, increased 
availability, etc. that makes virtualization user amenable 
whilst increasing hardware utilization. Modern enterprise 
applications are usually hosted in virtualized cloud 
datacenter utilizing the services in the form of infrastructure, 
platform or software. 

Different virtualization techniques are developed for 
cloud environment. The two common methods are 
hypervisor-based virtualization and container-based 
virtualization. In hypervisor-based virtualization, each virtual 
machine (VM) has its own operating system irrespective of 

the host machine running on a hypervisor, whereas in 
container-based virtualization, the container utilizes the 
services provided by the host operating system using 
container engine. The architectural difference between 
hypervisor-based virtualization and container-based 
virtualization is shown in Fig. 1. Xen [1], VMWare [2], 
KVM [3], etc. are typical examples of hypervisor-based 
virtualization while Docker [4], LXC [5], Rkt [6], etc. are 
typical examples of container-based virtualization.  

Virtual machines are considered to be the default method 
of virtualization. They provide many advantages but at the 
cost of high overhead as compared to the bare-metal 
performance. Recent research focuses on optimizing the 
degree of performance gap between virtualized and non-
virtualized state of solutions. Containers are becoming an 
attractive choice for providing near bare-metal performance 
with the advantage of virtualization. It becomes a viable 
alternative solution for applications that do not require 
extreme security or strict isolation. A set of research findings 
[7]–[10] shows that containers are a suitable alternative to 
VMs for HPC workloads. These applications usually have 
complex software dependencies involving several libraries 
and support software that can be embedded together inside a 
container image without worrying about the host platform 
configurations. Any additional functionality can easily be 
added or removed from the existing image that makes it 
more flexible and customizable. The light-weight feature 
makes it convenient to share the container with different 
users. These features also allow performing repeatable and 
reproducible experiments on any underlying host 
environment.  

 
Figure 1.  (a) Type-1 hypervisor, (b) Type-2 hypervisor and (c) Container-

based virtualization  



Recent study [11] shows that we can easily run multiple 
microservices inside a container that also makes it suitable 
for IaaS workloads in addition to PaaS workloads e.g. 
Heroku [12], OpenShift [13], etc., which has been 
considered as the classical applications for the containers. 
Although there are several advantages of container-based 
virtualization, multiple containers sharing the common 
hardware and OS is not well investigated. The performance 
of a container not only depends on its own characteristics but 
is also affected by the interference created by other 
containers running on the same host (inter-container 
interference). The effect of interference may be more if both 
the containers are running microservices having competing 
resource requirements. The interference may also be caused 
by microservices running inside a container (intra-container 
interference). It is important to visualize the performance 
variation while running multiple microservices inside a 
container to make a decision about whether to deploy 
multiple microservices inside a container or to use separate 
containers for each microservice. 

 Although a set of research findings available for running 
HPC micro-benchmarks on containers [7]–[10], they usually 
consider individual microservice running in an isolated 
environment, which is not the usual case in cloud 
environment. Our work is constructed on the previous works 
by investigating the container performance variation in case 
of interference. Based on the existing trends, this paper is 
aimed at answering the following key questions: 

 How does the performance of Docker container 
vary from the baseline while running 
heterogeneous microservices (competing or 
independent) either inside a container or in 
separate containers? The heterogeneity is specified 
towards particular resource type (CPU, memory, 
disk and network) of the microservices. This gives 
the measure of interference caused by multiple 
microservices running in a containerized 
environment. 

 Is it suitable to deploy multiple microservices 
inside a container? If yes, which type of 
microservices can be deployed together with 
minimal interference effect? As different 
microservices may have similar resource 
requirements that may lead to interference and 
resource contention. It is important to recognize the 
performance variation of microservices running 
together so that the interference can be minimized 
and resources can be utilized in an optimal way. 

The motivation of this paper is based on the above two 
research questions. This paper answers these questions and 
provides an understanding about the performance variation 
of HPC microservices. HPC microservices mimics the 
behavior of HPC workloads using a set of micro-
benchmarks, where each micro-benchmarks has an affinity 
towards particular resource type. In this paper, we have 
adopted four popular micro-benchmarks namely Linpack, 
STREAM, Bonnie++ and Netperf for evaluating CPU, 
memory, disk I/O and network resource performance 
respectively. To evaluate the performance, we choose the 

most popular open source container technology, Docker. 
Each Docker container can run single or multiple 
microservice(s) in different possible combinations inside a 
container. 

In this paper, we have utilized CEEM (Cloud Evaluation 
Experiment Methodology) approach to evaluate the 
performance of containers. We perform a quantitative 
experimental evaluation of containers under real-world 
conditions to analyze the performance variation. In 
particular, the main contributions of this paper are as 
follows: 

 We evaluate the performance of containers running 
collocated microservices and compare it with the 
baseline container that runs only one microservice in 
an isolated environment. This helps us to identify the 
interference effect of varying microservices, each 
intended towards specific resource type, running 
inside a container (intra-container interference). This 
also gives an idea about mixing different 
microservices inside a container with minimal 
performance degradation. 

 We also evaluate the performance of containers 
running in a clustered environment. Two containers 
running in parallel can cause interference (inter-
container interference) and the effect of interference 
depends on the type of microservice the containers 
are executing. If both the containers are executing 
microservices having similar resource requirement, 
the interference effect may be higher. Our result 
compares the performance of this interference with 
the baseline performance and intra-container 
performance. The result can also be used for 
modeling smart container resource provisioning 
techniques to minimize the interference effect. 

The rest of this paper is organized as follows. Section II 
discusses some relevant related work. CEEM methodology is 
explained briefly in Section III while application of CEEM 
to evaluate the performance of Docker containers is 
presented in section IV. Experimental results along with the 
inferences are discussed in Section V. Finally, Section VI 
concludes the paper giving some future work suggestions. 

II. RELATED WORK 

Recently, containers received a lot of hype as a 
virtualization technology due to several features such as 
lightweight, packaged, self-contained, etc. Containers as a 
deployment environment are initially introduced by PaaS 
providers such as CloudFoundry [14], Heroku [12], 
OpenShift [13] and DotCloud [15] for workload deployment 
and isolation. Here, the containers are used as overlays 
hosted on the top of VMs running on cloud servers [16]. The 
PaaS workloads are mostly elastic and stateless applications, 
but IaaS workloads (e.g. HPC workloads) can also take 
advantage of the container technology.   

Numerous efforts [7], [17], [18] show that containerizing 
the cloud infrastructure leads to highly efficient and agile 
solutions. It is evident from the previous work that containers 
can reduce the overhead while increasing the overall 
performance. Multiple studies support the value of containers 



with respect to VMs. These studies compare the performance 
of containers with respect to VMs for different benchmarks 
and show that the performance of container is better than or 
almost equal to the performance of VM. Felter et al. [7] 
measured the CPU, memory, disk and network performance 
of Docker with KVM and concludes that Docker performs 
better than KVM in all case.  Morabito et al. [8] perform 
similar study but they consider LXC and OSv along with 
Docker and KVM. They conclude that LXC outperforms 
KVM and Docker in almost all case. A similar study is given 
in [19] that uses  DoKnowMe evaluation strategy to compare 
the performance of KVM and Docker. Kozhirbayev et al. 
[20] evaluates the performance of two-container technology 
Docker and Flockport and shows that Flockport outperforms 
Docker in almost all case. 

Few of the works also specify running HPC workloads in 
Docker containers. The work in [9] shows how to orchestrate 
multiple containers on a physical node. The study is 
validated by running Linpack inside the container. Ruiz et al. 
[10] evaluate the performance of LXC container using NAS 
parallel benchmark. However, none of these works considers 
running multiple microservices either in same or different 
containers. 

Sharma et al. [21] compare the performance of collocated 
applications on a common host but only one application is 
running in a container/VM. They show the effects of 
interference caused by noisy neighbor containers running 
competing, orthogonal or adversarial applications. All the 
experiments are done on LXC container. Similar work is 
done by Ye et al. [22] for big data application (Spark). They 
also consider the interference caused by multiple containers 
each running different big data applications. From the best of 
our knowledge, none of the existing works consider the 
performance evaluation of heterogeneous microservices 
executing inside a container and compares the interference 
impact with the microservices running in separate containers. 
In this paper, we have demonstrated the performance 
evaluation of HPC micro-benchmarks intended towards 
specific resource type (CPU, memory, disk and network) in 
the form of microservices running inside the Docker 
container. The obtained result presents the performance 
variation of containers while running single or multiple co-
allocated (competing or independent) microservices. The 
output gives an understanding of interference effect caused 
by microservices running either in the same container or in 
separate containers.  The output also gives a suggestion 
about the microservices to be mixed together with minimal 
interference for better resource utilization. 

III. EVALUATION METHODOLOGY 

In order to investigate the performance of heterogeneous 
HPC microservices running in a container (such as Docker), 
we followed the Cloud Evaluation Experiment Methodology 
[23]. CEEM is a well-established performance evaluation 
methodology for cloud service evaluation and provides a 
systematic framework to perform evaluation studies that can 
easily be reproduced or extended for any environment. Due 
to similar guiding principles of VMs and containers, we 
argue by using CEEM, we will achieve rational and accurate 

experimental results. The steps of CEEM is briefly illustrated 
as follows:  

1. Requirement Recognition: Identify the problem, and 

state the purpose of the proposed evaluation.  

2. Service Feature Identification: Identify Cloud 

services and their features to be evaluated.  

3. Metrics and Benchmarks Listing: List all the metrics 

and benchmarks that may be used for the proposed 

evaluation.  

4. Metrics and Benchmarks Selection: Select suitable 

metrics and benchmarks for the proposed evaluation.  

5. Experimental Factors Listing: List all the factors that 

may be involved in the evaluation experiments.  

6. Experimental Factors Selection: Select limited factors 

to study, and also choose levels/ranges of these factors.  

7. Experimental Design: Design experiments based on 

the above work. Pilot experiments may also be done in 

advance to facilitate the experimental design.  

8. Experimental Implementation: Prepare experimental 

environment and perform the designed experiments. 

9. Experimental Analysis: Statistically analyze and 

interpret the experimental results.  

10. Conclusion and Reporting: Draw conclusions and 

report the overall evaluation procedure and results.  

In the next section, we present the experimental design 

and outcomes of the experiments. 

IV. PERFORMANCE EVALUATION – EXPERIMENT DESIGN 

A. Requirement Recognition and Service Feature 

Identification  

In this paper, our problem is mainly focused towards 

evaluating the performance variation of HPC microservices 

executing in a container with the following scenarios: 

Case 1. Single container running one microservice. The 

resources are limited by specifying runtime constraints 

(cgroups) for different resource types. It provides the 

baseline performance for further comparison. 

Case 2. Single container running multiple microservices 

(either independent or competing). No cgroups restrictions 

are enforced. Hence, the container can use all the resources 

provided by the host machine in a fair-share manner. For the 

sake of experimental validity, the number of microservices 

is limited by the host machine size i.e. for deploying two 

microservices inside a container, the host size must be 

double the size as defined in Case 1. We call this setup 

intra-container. 

Case 3. Multiple containers each running one 

microservice. We specify two sub-case:  

a) No cgroups: container compete for host resources on 

a fair-share basis. 

b) With cgroups: each container is limited by resources 

specified via a configuration.  

We call this setup as inter-container. The different 

experimental scenarios are given in Fig. 2. 



 

Figure 2.  Schematic diagram showing different experimental scenarios 

B. Metrics/Benchmarks Listing and Selection:  

To measure the performance of individual resources of 

the container (e.g. CPU, memory, I/O and network), specific 

micro-benchmarks are employed. Table I summarizes the 

resource type with relevant metrics and benchmarks used 

for our experimental evaluation. 

i. CPU performance: To evaluate the performance of 
CPU, we used Linpack [24]. Linpack measures the 
system’s computing performance by solving a 
system of linear algebra equations of order N using 
lower upper factorization and partial pivoting. This 
benchmark is highly adaptive and provides the 
expected peak CPU performance. The performance 
is measured in terms of number of Giga Floating 
Point Operations performed Per Seconds 
(GFLOPS).o 

ii. Memory performance: To test the memory 
performance, we used STREAM [25] that measures 
the system performance by using simple operation 
on vectors. This benchmark shows the best possible 
memory bandwidth achieved by the system. There 
are four operations in STREAM namely COPY, 
SCALE, ADD and TRIAD. A description of these 
operations and the number of FLOPS required per 
iteration is shown in Table II. The result of memory 
performance is measured in terms of GB/sec. 

iii. Disk I/O performance: For evaluating disk I/O 
performance, an open-source micro-benchmark 
Bonnie++ [26] is used. The size of data set must be 
double the size of available system memory. The 
output represents multiple performance parameters 
in terms of block output and block input for read 
and write respectively. The other parameters to be 
measured are rewrite and random seeks. The result 
for block input, block output and block rewrite is 
represented in Mb/sec while the output for random 
seeks is represented in /sec. 

iv. Network performance: For measuring network 
performance, we used Netperf [27]. Netperf is a 
request-response benchmark that measures the 
round trip network performance between two hosts. 
Two identical machines are considered for the test, 
one running the netperf and other running the 
netserver. We analyze the bidirectional network 
traffic using TCP Stream test. No traffic is placed 
on the system’s control connection while 
performing the test. The result is measured in Mbps. 

For deployment, the micro-benchmarks are wrapped up as 

a microservices in the form of a container image. The whole 

process of constructing a containerized microservice image 

from Linpack micro-benchmarks and deployment on a host 

machine is shown in Fig. 3.  A similar process is followed 

for other micro-benchmarks. The container image can be 

stored in a shared repository and can be easily downloaded 

and deployed whenever required.   

 

Figure 3.  Steps for Linpack HPC microservice construction 

TABLE I.  METRICS AND BENCHMARKS FOR SELECTED SERVICE 

FEATURES 

Resource 

Type 

Selected Metrics Selected 

Benchmarks 

Version 

CPU FLOPS (Floating 
Point Operations 

Per Sec) 

Linpack Mklb_p_2018.0. 
006 

Memory Data Throughput STREAM 5.10 

Disk I/O Disk Throughput, 
Random Seeks 

Bonnie++ 1.03e 

Network Network 

Throughput 

Netperf 2.7.0 

TABLE II.  STREAM BENCHMARK OPERATIONS 

Operation Kernel FLOPS per iteration 

COPY A[i] = B[i] 0 

SCALE A[i] = n × B[i] 1 

ADD A[i] = B[i] + C[i] 2 

TRIAD A[i] = B[i] + n × C[i] 3 



C. Experimental Factors Listings and Selection 

The performance of designed experiment is completely 

influenced by the selection of experimental factors. In this 

paper, we followed the experimental factor framework for 

the evaluation of cloud services to identify the various 

factors as discussed in [28]. 

 Deployment Environment: For our evaluation, we 
considered Docker container. The selection of 
Docker container is due to its popularity and 
uniformity among the cloud environment. Docker 
wraps up the application with all its dependencies 
into a container so that it can easily be executed on 
any Linux server (on-premise, bare metal, public or 
private cloud) [29]. It uses layered file system 
images along with the other Linux kernel features 
(namespace and cgroups) for the management of 
containers. This feature allows Docker to create any 
number of containers from a base image, which are 
copies of the base image wrapped up with additional 
features. This also reduces the overall memory and 
storage requirements that eases fast startup. Another 
important feature of AUFS is that each update in the 
base image is saved as a new image that contains all 
the updated information that makes it easy to track 
any changes. 

 CPU Index: The CPU configuration of the virtual 
machine running Docker is X64 bit CPU @ 
2.30GHz processor with 2 cores. We have not 
specified any cgroups for Case 2 and Case 3a so the 
container can access both cores in a fair share 
manner. For Case 1 and Case 3b, we specified the 
cgroups so that one container can use only 1 core. 

 Memory and Storage Size: The memory 
configuration is confined to 4 GB DDR3 RAM 
while the storage is limited to 50 GB. Here also, we 
specified the memory limit to use only 2 GB of 
RAM for Case 1 and Case 3b while Case 2 and Case 
3a can access the whole memory in a fair share 
manner. 

 Operating system: The operating system employed 
in all the experiments are Ubuntu 16.04. The Docker 
containers also use Ubuntu 16.04 as their base 
image. 

 Workload size and configuration: For each 
microservice, we provide a specific configuration. 
For Linpack, we consider the matrix of size N as 
15000. We also considered the problem size 
(number of equations to solve) as 15000. Finally, we 
considered the data alignment value as 4 Kbytes. We 
configure the STREAM by setting the 
DSTREAM_ARRAY_SIZE as 60M and DNTIMES 
as 200. The total memory requirement for this 
configuration is 1373.3 MiB. For Bonnie++, we 
considered the file size as 8192 MB and set the uid 
to use as root. The network protocol for Netperf is 
set to TCP along with the testlen (-l) as 120 seconds. 

D. Experimental Design 

For evaluating the performance of a single microservice, 

we run our container with each microservice and collect the 

results. We repeat our experiments for 30 iterations to 

validate the results and factors for any variations introduced 

by the delay in accessing the resources.  

For running multiple microservices together, we consider 

all the possible combinations as discussed in Section IV (A) 

with competing and independent case (e.g. CPU intensive 

with another CPU intensive microservice or with a Memory 

intensive microservice and so on). Since the isolated 

running time of different microservices are not identical 

(Linpack: 121 sec, STREAM: 122 sec, Bonnie++: 108 sec 

and Netperf: 120 sec), running the experiments for Case 2, 

3a and 3b for some fixed number of iterations is not 

suitable. Hence, for these case, we repeat the benchmarking 

experiments for an interval of 90 minutes and compute the 

average performance. For Case 3a and 3b, both the 

containers are running concurrently while for Case 2, 

different microservices are running parallely in an infinite 

loop. 

V. PERFORMANCE EVALUATION - OUTCOMES AND 

ANALYSIS 

In this section, we present the outcomes of experimental 

evaluations conducted to benchmark the performance of 

microservices running in a Docker container for the various 

case described in Section IV (A). For the ease of 

presentation of the results, we used the following 

abbreviations for the microservices namely Linpack (L), 

STREAM (S), Bonnie++ (B) and Netperf (N). 
For each experimental outcome, we compute the mean 

and standard deviation (SD). The mean indicates the overall 
outcome of the experiments in terms of resource 
performance. To visualize the effect of interference, we also 
calculate interference ratio (IR). IR is calculated using 

particular mean value (µi) and the baseline mean value (µ) as 

shown in equation 1. Negative IR value shows the 
performance degradation while positive IR value shows the 
performance increment. 

IR = (µi – µ)/ µ   (1) 

A. CPU Performance (CPU) Evaluation and Analysis 

For evaluating the computation performance, we 

implemented Linpack microservice in Docker. We ran 

experiments to evaluate the performance of Linpack 

microservice as per the various case described in Section 

IV(A). Fig. 3 shows the CPU performance variation of 

Linpack in terms of GFLOPS. 
From Fig. 3, we can see that except for Case 2 with 

heterogeneous microservices, remaining combinations have 
a significant impact on the performance. The worst 
performance is shown by Case 2(L+L) with 21% 
performance degradation. The reason behind this is the lack 
of resource pinning that causes both microservices to 



contend for the same core even though more cores are 
available. The effect of interference is clearly visible from 
Table III that shows the combination (L+S) have minimum 
interference for all the case. The performance of two Linpack 
instance is best when they are running in separate containers 
with cgroups constraints enabled with only 14% performance 
degradation. The remaining performances are comparable 
with the baseline performance. 

One more point to notice from the result of Fig. 4 and 
Table III is that there is not much variation in the 
performance of containers caused due to constraining the 
resources as seen from Case 3a and 3b, but the performance 
is always better for Case 3a where one container can use 
extra resources not used by the other containers. The result 
also infers the interference effect between two containers 
running Linpack instance is much lesser than the interference 
caused by two Linpack instance running inside a single 
container. This shows that inter-container interference is 
lesser than intra-container interference while considering 
similar type of microservices. 

 

Figure 4.  Average CPU Performance of Linpack. Black bars on top show 

the SD. 

TABLE III.  IR VALUE FOR LINPACK 

 
L+L L+S L+B L+N 

Case 2 -0.2102 0.2421 0.0267 0.0856 

Case 3a -0.1613 -0.1085 -0.1310 -0.0125 

Case 3b -0.1487 -0.1642 -0.1752 -0.0805 

B. Memory Evaluation and Analysis 

For memory performance evaluation, we implemented 
STREAM microservice deployed inside a Docker container. 
The simplicity of STREAM makes it suitable for sustainable 
memory evaluation. The average result of all the four vector 
operations (COPY, SCALE, ADD and TRIAD) for different 
case of STREAM expressed in GB/sec are shown in Table 
IV. The result shows that a performance gain is achieved 
when STREAM is deployed with different microservices 
collocated inside a container (Case2) with an average of 2% 
performance gain. Also, the performance of two instances of 
STREAM is better for Case 2.  For Case 3a and 3b, the best 

performance is achieved when STREAM is deployed with 
Bonnie++ followed by Netperf and Linpack. The 
performance is worst with high standard deviation when two 
similar instances are deployed in separate containers as 
shown in Case 3a and 3b. 

Fig. 5 shows the IR values for all the case. A 
performance gain for Case 2 (S+L), (S+B), (S+N) for all 
operations can be easily visualized from the positive IR 
values. The result also shows that the effect of interference is 
very less for memory intensive microservices as the 
performance is nearly same as the baseline performance for 
all the case except multiple instances of STREAM.  

C. Disk I/O Evaluation and Analysis 

To evaluate the I/O capacity of the storage disk, we used 

Bonnie++ microservice that creates a large dataset atleast 

twice the size of inbuilt memory. It evaluates multiple 

performance parameters but we are concerned only with 

sequential block output and input, sequential block rewrite 

and random seeks. The average performance result is shown 

in Table V while the IR variation is shown in Fig. 6. 

The result shows the similar interference pattern 

indicating, running multiple instances of Bonnie++ creates 

higher contention while executing either in a single 

container or separate containers. The performance is worst 

for random seek with a maximum degradation of 66 % for 

Case 2 (B+B). The best performance is achieved by the 

combination of Bonnie++ with Netperf followed by Linpack 

and STREAM for all the case. One more point to notice 

from Table V is that the performance of collocated 

microservices inside a single container is comparable to the 

performance of microservices running in multiple 

containers.  

TABLE IV.  AVERAGE MEMORY PERFORMANCE OF STREAM. THE 

STANDARD DEVIATION IS SHOWN WITH SQUARE BRACKETS “[]”. 

 COPY SCALE ADD TRIAD 

1 13.36 [±0.07] 8.10 [±0.03] 11.85 [±0.08] 6.79 [±0.03] 

2 

S+S 11.42 [±0.78] 7.80 [±0.12] 11.00 [±0.47] 6.63 [±0.04] 

S+L 14.01 [±0.20] 8.11 [±0.02] 11.97 [±0.04] 6.80 [±0.02] 

S+B 13.45 [±0.40] 8.13 [±0.16] 11.95 [±0.24] 6.85 [±0.10] 

S+N 13.89 [±0.04] 8.17 [±0.04] 11.99 [±0.04] 6.83 [±0.03] 

3a 

S+S 11.29 [±1.51] 7.48 [±0.39] 10.25 [±1.00] 6.44 [±0.17] 

S+L 12.98 [±0.74] 7.90 [±0.25] 11.57 [±0.42] 6.66 [±0.17] 

S+B 13.42 [±0.20] 7.97 [±0.09] 11.73 [±0.11] 6.69 [±0.11] 

S+N 13.16 [±0.20] 7.91 [±0.07] 11.52 [±0.11] 6.65 [±0.05] 

3b 

S+S 11.18 [±1.33] 7.53 [±0.28] 10.40 [±0.78] 6.53 [±0.17] 

S+L 12.81 [±0.50] 7.79 [±0.27] 11.33 [±0.44] 6.61 [±0.16] 

S+B 13.13 [±0.50] 7.97 [±0.14] 11.64 [±0.32] 6.68 [±0.13] 

S+N 13.22 [±0.09] 7.94 [±0.05] 11.58 [±0.02] 6.68 [±0.02] 



 

Figure 5.  IR value for STREAM. Horizontal axis labels represent various 

case. 1-4 represents (S+S), (S+L), (S+B) and (S+N) for Case 2. Similarly, 

4-8 and 8-12 represent different scenarios for Case 3a and 3b respectively. 

 
Figure 6.  IR value for Bonnie++. Horizontal axis labels represent various 

case. 1-4 represents (B+B), (B+L), (B+S) and (B+N) for Case 2. Similarly, 

5-8 and 9-12 represent different scenarios of Case 3a and 3b respectively. 

The result also shows that, except for the case of multiple 
instances of Bonnie++ (B+B), the performance is nearly 
equal to the baseline performance. Very small deviation from 
the baseline performance for all the case except for (B+B) as 
shown in Fig. 6 exhibits that the performance of Bonnie++ is 
less affected by other microservice execution. 

D. Network Performance Analysis:  

To analyze the network performance, we used Netperf 
microservice operating one container as a server and another 
container as a client. The server is running the “netserver” 
application while the client is running “netperf” application. 
A stream of data is sent from client to server for an interval 
of 120 seconds following TCP protocol and the network 
throughput is calculated. The experimental outcomes for the 
various case are shown in Fig. 7. Table VI shows the 
variation of IR values. 

The result shows that the performance of network 
intensive microservices (Netperf) is not much affected by 
any other microservices when deployed in separate 
containers. The best performance is achieved for Netperf 
instance deployed with other Netperf instance followed by 
Linpack deployed in separate containers. A large 

performance degradation is noticed (up to 23% for Case 3a 
and 3b and 31% for Case 2) for the execution of Netperf 
with Bonnie++. In Case 2, for both competing and 
independent microservices, a large performance degradation 
is observed (up to 45% for Case 2 (N+L)). One more 
observation is that the performance of Case 3a and 3b are 
similar showing that the cgroups resource constraint does not 
have a significant impact on network intensive 
microservices. 

TABLE V.  AVERAGE I/O PERFORMANCE OF BONNIE++. THE 

STANDARD DEVIATION IS SHOWN WITH SQUARE BRACKETS “[]”. 

 B Output B Input B Rewrite R Seek 

1 296.3 [±8.23] 340.8 [±8.61] 145.7 [±2.78] 10.5 [±0.61] 

2 

B+B 156.1 [±31.88] 146.8 [±2.71] 64.5 [±2.54] 3.5 [±0.15] 

B+L 277.0 [±12.23] 274.0 [±9.10] 126.9 [±3.09] 9.7 [±0.82] 

B+S 283.0 [±7.98] 286.6 [±7.75] 128.8 [±4.12] 10.0 [±0.77] 

B+N 303.4 [±14.81] 314.2 [±8.13] 128.0 [±3.13] 10.6 [±1.22] 

3a 

B+B 145.5 [±4.71] 149.3 [±1.51] 65.1 [±1.20] 3.8 [±0.13] 

B+L 277.6 [±11.63] 262.1 [±15.63] 129.0 [±4.45] 9.1 [±1.74] 

B+S 283.4 [±8.04] 285.0 [±7.94] 129.3 [±3.36] 10.2 [±0.75] 

B+N 295.7 [±11.90] 322.7 [±13.89] 131.2 [±4.45] 11.4 [±0.77] 

3b 

B+B 150.7 [±5.90] 146.7 [±5.22] 65.8 [±1.59] 4.8 [±0.90] 

B+L 292.2 [±13.05] 285.6 [±6.08] 134.4 [±3.11] 9.6 [±0.60] 

B+S 273.6 [±9.14] 287.4 [±7.80] 133.5 [±3.49] 9.6 [±1.36] 

B+N 293.3 [±9.37] 286.9 [±16.96] 133.2 [±6.25] 10.0 [±1.26] 

 

 
Figure 7.  Average Network Performance of Netperf TCP Stream. Black 

bars on top show the SD. 

TABLE VI.  IR VALUE FOR NETPERF TCP STREAM 

 
N+N N+L N+S N+B 

Case 2 -0.3652 -0.4560 -0.4215 -0.3127 

Case 3a -0.0269 -0.0747 -0.1464 -0.2381 

Case 3b -0.0251 -0.0581 -0.1150 -0.2382 



VI. CONCLUSIONS AND FUTURE WORK 

Containers are now considered as a viable alternative for 
VM in cloud infrastructure services as they provide 
virtualization advantages with bare metal performance. They 
bind all the necessary software in the form of image and can 
easily be deployed in any environment.  These advantages 
make them a suitable choice for microservices with complex 
hardware or software requirements e.g. HPC applications. To 
get the full benefit from container-based virtualization, it is 
important to understand how multiple microservices running 
in same or different containers interfere with the 
performance of other microservices. 

In this paper, we benchmarked the performance of 
containerized microservices in different scenarios. In 
particular, we conducted experimental evaluations using 
HPC-based microservices to study the interference issues 
caused by co-location of microservices in a single container 
and across multiple containers both running on a single host. 
The result provides a detailed insight about the performance 
variation of the microservices. The findings are as follows. 

 Execution of multiple microservices inside a 
container is also a feasible deployment option as it 
gives comparable (sometimes better) performance 
than the baseline except for multiple execution of 
similar type of microservices. 

 CPU intensive microservices can give better 
performance when running with either memory or 
disk intensive microservices. Memory and disk 
intensive microservices are not affected by other 
microservices running in either same container or 
multiple containers. The performance of network 
intensive microservices impacts any other 
microservices that are running within the same 
container. 

In the future, we aim to conduct further research to 
develop a framework that takes into consideration such 
interference effects while provisioning microservices-based 
application on containers. 
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