
A Holistic Evaluation of Docker Containers for Interfering Microservices

Devki Nandan Jha1, Saurabh Garg2, Prem Prakash Jayaraman3, Rajkumar Buyya4, Zheng Li5, Rajiv Ranjan1
1Newcastle University, UK

2University of Tasmania, Australia
3Swinburne University of Technology, Australia

4The University of Melbourne, Australia

5Nanjing University of Science and Technology, China

{d.n.jha2, raj.ranjan}@newcastle.ac.uk

Abstract— Advancement of container technology (e.g. Docker,

LXC, etc.) transformed the virtualization concept by providing

a lightweight alternative to hypervisors. Docker has emerged

as the most popular container management tool. Recent

research regarding the comparison of container with

hypervisor and bare-metal demonstrates that the container can

accomplish bare-metal performance in almost all case.

However, the current literature lacks an in-depth study on the

experimental evaluation for understanding the performance

interference between microservices that are hosted within a

single or across multiple containers. In this paper, we have

presented the experimental study on the performance

evaluation of Docker containers running heterogeneous set of

microservices concurrently. We have conducted a

comprehensive set of experiments following CEEM (Cloud

Evaluation Experiment Methodology) to measure the

interference between containers running either competing or

independent microservices. We have also considered the effects

of constraining the resources of a container by explicitly

specifying the cgroups. We have evaluated the performance of

containers in terms of inter-container (caused by two

concurrent executing containers) and intra-container (caused

between two microservices executing inside a container)

interference which is almost neglected in the current literature.

The evaluation results can be utilized to model the interference

effect for smart resource provisioning of microservices in the

containerized environment.

Keywords- Microservice, Container, Docker, Interference,

Cloud Service Evaluation

I. INTRODUCTION

Virtualization is the core component of cloud computing
that allows multiple tenants to run their heterogeneous
applications in an isolated environment. It provides
numerous advantages including heterogeneous consolidation,
easy allocation, reduced failure probability, increased
availability, etc. that makes virtualization user amenable
whilst increasing hardware utilization. Modern enterprise
applications are usually hosted in virtualized cloud
datacenter utilizing the services in the form of infrastructure,
platform or software.

Different virtualization techniques are developed for
cloud environment. The two common methods are
hypervisor-based virtualization and container-based
virtualization. In hypervisor-based virtualization, each virtual
machine (VM) has its own operating system irrespective of

the host machine running on a hypervisor, whereas in
container-based virtualization, the container utilizes the
services provided by the host operating system using
container engine. The architectural difference between
hypervisor-based virtualization and container-based
virtualization is shown in Fig. 1. Xen [1], VMWare [2],
KVM [3], etc. are typical examples of hypervisor-based
virtualization while Docker [4], LXC [5], Rkt [6], etc. are
typical examples of container-based virtualization.

Virtual machines are considered to be the default method
of virtualization. They provide many advantages but at the
cost of high overhead as compared to the bare-metal
performance. Recent research focuses on optimizing the
degree of performance gap between virtualized and non-
virtualized state of solutions. Containers are becoming an
attractive choice for providing near bare-metal performance
with the advantage of virtualization. It becomes a viable
alternative solution for applications that do not require
extreme security or strict isolation. A set of research findings
[7]–[10] shows that containers are a suitable alternative to
VMs for HPC workloads. These applications usually have
complex software dependencies involving several libraries
and support software that can be embedded together inside a
container image without worrying about the host platform
configurations. Any additional functionality can easily be
added or removed from the existing image that makes it
more flexible and customizable. The light-weight feature
makes it convenient to share the container with different
users. These features also allow performing repeatable and
reproducible experiments on any underlying host
environment.

Figure 1. (a) Type-1 hypervisor, (b) Type-2 hypervisor and (c) Container-

based virtualization

Recent study [11] shows that we can easily run multiple
microservices inside a container that also makes it suitable
for IaaS workloads in addition to PaaS workloads e.g.
Heroku [12], OpenShift [13], etc., which has been
considered as the classical applications for the containers.
Although there are several advantages of container-based
virtualization, multiple containers sharing the common
hardware and OS is not well investigated. The performance
of a container not only depends on its own characteristics but
is also affected by the interference created by other
containers running on the same host (inter-container
interference). The effect of interference may be more if both
the containers are running microservices having competing
resource requirements. The interference may also be caused
by microservices running inside a container (intra-container
interference). It is important to visualize the performance
variation while running multiple microservices inside a
container to make a decision about whether to deploy
multiple microservices inside a container or to use separate
containers for each microservice.

 Although a set of research findings available for running
HPC micro-benchmarks on containers [7]–[10], they usually
consider individual microservice running in an isolated
environment, which is not the usual case in cloud
environment. Our work is constructed on the previous works
by investigating the container performance variation in case
of interference. Based on the existing trends, this paper is
aimed at answering the following key questions:

 How does the performance of Docker container
vary from the baseline while running
heterogeneous microservices (competing or
independent) either inside a container or in
separate containers? The heterogeneity is specified
towards particular resource type (CPU, memory,
disk and network) of the microservices. This gives
the measure of interference caused by multiple
microservices running in a containerized
environment.

 Is it suitable to deploy multiple microservices
inside a container? If yes, which type of
microservices can be deployed together with
minimal interference effect? As different
microservices may have similar resource
requirements that may lead to interference and
resource contention. It is important to recognize the
performance variation of microservices running
together so that the interference can be minimized
and resources can be utilized in an optimal way.

The motivation of this paper is based on the above two
research questions. This paper answers these questions and
provides an understanding about the performance variation
of HPC microservices. HPC microservices mimics the
behavior of HPC workloads using a set of micro-
benchmarks, where each micro-benchmarks has an affinity
towards particular resource type. In this paper, we have
adopted four popular micro-benchmarks namely Linpack,
STREAM, Bonnie++ and Netperf for evaluating CPU,
memory, disk I/O and network resource performance
respectively. To evaluate the performance, we choose the

most popular open source container technology, Docker.
Each Docker container can run single or multiple
microservice(s) in different possible combinations inside a
container.

In this paper, we have utilized CEEM (Cloud Evaluation
Experiment Methodology) approach to evaluate the
performance of containers. We perform a quantitative
experimental evaluation of containers under real-world
conditions to analyze the performance variation. In
particular, the main contributions of this paper are as
follows:

 We evaluate the performance of containers running
collocated microservices and compare it with the
baseline container that runs only one microservice in
an isolated environment. This helps us to identify the
interference effect of varying microservices, each
intended towards specific resource type, running
inside a container (intra-container interference). This
also gives an idea about mixing different
microservices inside a container with minimal
performance degradation.

 We also evaluate the performance of containers
running in a clustered environment. Two containers
running in parallel can cause interference (inter-
container interference) and the effect of interference
depends on the type of microservice the containers
are executing. If both the containers are executing
microservices having similar resource requirement,
the interference effect may be higher. Our result
compares the performance of this interference with
the baseline performance and intra-container
performance. The result can also be used for
modeling smart container resource provisioning
techniques to minimize the interference effect.

The rest of this paper is organized as follows. Section II
discusses some relevant related work. CEEM methodology is
explained briefly in Section III while application of CEEM
to evaluate the performance of Docker containers is
presented in section IV. Experimental results along with the
inferences are discussed in Section V. Finally, Section VI
concludes the paper giving some future work suggestions.

II. RELATED WORK

Recently, containers received a lot of hype as a
virtualization technology due to several features such as
lightweight, packaged, self-contained, etc. Containers as a
deployment environment are initially introduced by PaaS
providers such as CloudFoundry [14], Heroku [12],
OpenShift [13] and DotCloud [15] for workload deployment
and isolation. Here, the containers are used as overlays
hosted on the top of VMs running on cloud servers [16]. The
PaaS workloads are mostly elastic and stateless applications,
but IaaS workloads (e.g. HPC workloads) can also take
advantage of the container technology.

Numerous efforts [7], [17], [18] show that containerizing
the cloud infrastructure leads to highly efficient and agile
solutions. It is evident from the previous work that containers
can reduce the overhead while increasing the overall
performance. Multiple studies support the value of containers

with respect to VMs. These studies compare the performance
of containers with respect to VMs for different benchmarks
and show that the performance of container is better than or
almost equal to the performance of VM. Felter et al. [7]
measured the CPU, memory, disk and network performance
of Docker with KVM and concludes that Docker performs
better than KVM in all case. Morabito et al. [8] perform
similar study but they consider LXC and OSv along with
Docker and KVM. They conclude that LXC outperforms
KVM and Docker in almost all case. A similar study is given
in [19] that uses DoKnowMe evaluation strategy to compare
the performance of KVM and Docker. Kozhirbayev et al.
[20] evaluates the performance of two-container technology
Docker and Flockport and shows that Flockport outperforms
Docker in almost all case.

Few of the works also specify running HPC workloads in
Docker containers. The work in [9] shows how to orchestrate
multiple containers on a physical node. The study is
validated by running Linpack inside the container. Ruiz et al.
[10] evaluate the performance of LXC container using NAS
parallel benchmark. However, none of these works considers
running multiple microservices either in same or different
containers.

Sharma et al. [21] compare the performance of collocated
applications on a common host but only one application is
running in a container/VM. They show the effects of
interference caused by noisy neighbor containers running
competing, orthogonal or adversarial applications. All the
experiments are done on LXC container. Similar work is
done by Ye et al. [22] for big data application (Spark). They
also consider the interference caused by multiple containers
each running different big data applications. From the best of
our knowledge, none of the existing works consider the
performance evaluation of heterogeneous microservices
executing inside a container and compares the interference
impact with the microservices running in separate containers.
In this paper, we have demonstrated the performance
evaluation of HPC micro-benchmarks intended towards
specific resource type (CPU, memory, disk and network) in
the form of microservices running inside the Docker
container. The obtained result presents the performance
variation of containers while running single or multiple co-
allocated (competing or independent) microservices. The
output gives an understanding of interference effect caused
by microservices running either in the same container or in
separate containers. The output also gives a suggestion
about the microservices to be mixed together with minimal
interference for better resource utilization.

III. EVALUATION METHODOLOGY

In order to investigate the performance of heterogeneous
HPC microservices running in a container (such as Docker),
we followed the Cloud Evaluation Experiment Methodology
[23]. CEEM is a well-established performance evaluation
methodology for cloud service evaluation and provides a
systematic framework to perform evaluation studies that can
easily be reproduced or extended for any environment. Due
to similar guiding principles of VMs and containers, we
argue by using CEEM, we will achieve rational and accurate

experimental results. The steps of CEEM is briefly illustrated
as follows:

1. Requirement Recognition: Identify the problem, and

state the purpose of the proposed evaluation.

2. Service Feature Identification: Identify Cloud

services and their features to be evaluated.

3. Metrics and Benchmarks Listing: List all the metrics

and benchmarks that may be used for the proposed

evaluation.

4. Metrics and Benchmarks Selection: Select suitable

metrics and benchmarks for the proposed evaluation.

5. Experimental Factors Listing: List all the factors that

may be involved in the evaluation experiments.

6. Experimental Factors Selection: Select limited factors

to study, and also choose levels/ranges of these factors.

7. Experimental Design: Design experiments based on

the above work. Pilot experiments may also be done in

advance to facilitate the experimental design.

8. Experimental Implementation: Prepare experimental

environment and perform the designed experiments.

9. Experimental Analysis: Statistically analyze and

interpret the experimental results.

10. Conclusion and Reporting: Draw conclusions and

report the overall evaluation procedure and results.

In the next section, we present the experimental design

and outcomes of the experiments.

IV. PERFORMANCE EVALUATION – EXPERIMENT DESIGN

A. Requirement Recognition and Service Feature

Identification

In this paper, our problem is mainly focused towards

evaluating the performance variation of HPC microservices

executing in a container with the following scenarios:

Case 1. Single container running one microservice. The

resources are limited by specifying runtime constraints

(cgroups) for different resource types. It provides the

baseline performance for further comparison.

Case 2. Single container running multiple microservices

(either independent or competing). No cgroups restrictions

are enforced. Hence, the container can use all the resources

provided by the host machine in a fair-share manner. For the

sake of experimental validity, the number of microservices

is limited by the host machine size i.e. for deploying two

microservices inside a container, the host size must be

double the size as defined in Case 1. We call this setup

intra-container.

Case 3. Multiple containers each running one

microservice. We specify two sub-case:

a) No cgroups: container compete for host resources on

a fair-share basis.

b) With cgroups: each container is limited by resources

specified via a configuration.

We call this setup as inter-container. The different

experimental scenarios are given in Fig. 2.

Figure 2. Schematic diagram showing different experimental scenarios

B. Metrics/Benchmarks Listing and Selection:

To measure the performance of individual resources of

the container (e.g. CPU, memory, I/O and network), specific

micro-benchmarks are employed. Table I summarizes the

resource type with relevant metrics and benchmarks used

for our experimental evaluation.

i. CPU performance: To evaluate the performance of
CPU, we used Linpack [24]. Linpack measures the
system’s computing performance by solving a
system of linear algebra equations of order N using
lower upper factorization and partial pivoting. This
benchmark is highly adaptive and provides the
expected peak CPU performance. The performance
is measured in terms of number of Giga Floating
Point Operations performed Per Seconds
(GFLOPS).o

ii. Memory performance: To test the memory
performance, we used STREAM [25] that measures
the system performance by using simple operation
on vectors. This benchmark shows the best possible
memory bandwidth achieved by the system. There
are four operations in STREAM namely COPY,
SCALE, ADD and TRIAD. A description of these
operations and the number of FLOPS required per
iteration is shown in Table II. The result of memory
performance is measured in terms of GB/sec.

iii. Disk I/O performance: For evaluating disk I/O
performance, an open-source micro-benchmark
Bonnie++ [26] is used. The size of data set must be
double the size of available system memory. The
output represents multiple performance parameters
in terms of block output and block input for read
and write respectively. The other parameters to be
measured are rewrite and random seeks. The result
for block input, block output and block rewrite is
represented in Mb/sec while the output for random
seeks is represented in /sec.

iv. Network performance: For measuring network
performance, we used Netperf [27]. Netperf is a
request-response benchmark that measures the
round trip network performance between two hosts.
Two identical machines are considered for the test,
one running the netperf and other running the
netserver. We analyze the bidirectional network
traffic using TCP Stream test. No traffic is placed
on the system’s control connection while
performing the test. The result is measured in Mbps.

For deployment, the micro-benchmarks are wrapped up as

a microservices in the form of a container image. The whole

process of constructing a containerized microservice image

from Linpack micro-benchmarks and deployment on a host

machine is shown in Fig. 3. A similar process is followed

for other micro-benchmarks. The container image can be

stored in a shared repository and can be easily downloaded

and deployed whenever required.

Figure 3. Steps for Linpack HPC microservice construction

TABLE I. METRICS AND BENCHMARKS FOR SELECTED SERVICE

FEATURES

Resource

Type

Selected Metrics Selected

Benchmarks

Version

CPU FLOPS (Floating
Point Operations

Per Sec)

Linpack Mklb_p_2018.0.
006

Memory Data Throughput STREAM 5.10

Disk I/O Disk Throughput,
Random Seeks

Bonnie++ 1.03e

Network Network

Throughput

Netperf 2.7.0

TABLE II. STREAM BENCHMARK OPERATIONS

Operation Kernel FLOPS per iteration

COPY A[i] = B[i] 0

SCALE A[i] = n × B[i] 1

ADD A[i] = B[i] + C[i] 2

TRIAD A[i] = B[i] + n × C[i] 3

C. Experimental Factors Listings and Selection

The performance of designed experiment is completely

influenced by the selection of experimental factors. In this

paper, we followed the experimental factor framework for

the evaluation of cloud services to identify the various

factors as discussed in [28].

 Deployment Environment: For our evaluation, we
considered Docker container. The selection of
Docker container is due to its popularity and
uniformity among the cloud environment. Docker
wraps up the application with all its dependencies
into a container so that it can easily be executed on
any Linux server (on-premise, bare metal, public or
private cloud) [29]. It uses layered file system
images along with the other Linux kernel features
(namespace and cgroups) for the management of
containers. This feature allows Docker to create any
number of containers from a base image, which are
copies of the base image wrapped up with additional
features. This also reduces the overall memory and
storage requirements that eases fast startup. Another
important feature of AUFS is that each update in the
base image is saved as a new image that contains all
the updated information that makes it easy to track
any changes.

 CPU Index: The CPU configuration of the virtual
machine running Docker is X64 bit CPU @
2.30GHz processor with 2 cores. We have not
specified any cgroups for Case 2 and Case 3a so the
container can access both cores in a fair share
manner. For Case 1 and Case 3b, we specified the
cgroups so that one container can use only 1 core.

 Memory and Storage Size: The memory
configuration is confined to 4 GB DDR3 RAM
while the storage is limited to 50 GB. Here also, we
specified the memory limit to use only 2 GB of
RAM for Case 1 and Case 3b while Case 2 and Case
3a can access the whole memory in a fair share
manner.

 Operating system: The operating system employed
in all the experiments are Ubuntu 16.04. The Docker
containers also use Ubuntu 16.04 as their base
image.

 Workload size and configuration: For each
microservice, we provide a specific configuration.
For Linpack, we consider the matrix of size N as
15000. We also considered the problem size
(number of equations to solve) as 15000. Finally, we
considered the data alignment value as 4 Kbytes. We
configure the STREAM by setting the
DSTREAM_ARRAY_SIZE as 60M and DNTIMES
as 200. The total memory requirement for this
configuration is 1373.3 MiB. For Bonnie++, we
considered the file size as 8192 MB and set the uid
to use as root. The network protocol for Netperf is
set to TCP along with the testlen (-l) as 120 seconds.

D. Experimental Design

For evaluating the performance of a single microservice,

we run our container with each microservice and collect the

results. We repeat our experiments for 30 iterations to

validate the results and factors for any variations introduced

by the delay in accessing the resources.

For running multiple microservices together, we consider

all the possible combinations as discussed in Section IV (A)

with competing and independent case (e.g. CPU intensive

with another CPU intensive microservice or with a Memory

intensive microservice and so on). Since the isolated

running time of different microservices are not identical

(Linpack: 121 sec, STREAM: 122 sec, Bonnie++: 108 sec

and Netperf: 120 sec), running the experiments for Case 2,

3a and 3b for some fixed number of iterations is not

suitable. Hence, for these case, we repeat the benchmarking

experiments for an interval of 90 minutes and compute the

average performance. For Case 3a and 3b, both the

containers are running concurrently while for Case 2,

different microservices are running parallely in an infinite

loop.

V. PERFORMANCE EVALUATION - OUTCOMES AND

ANALYSIS

In this section, we present the outcomes of experimental

evaluations conducted to benchmark the performance of

microservices running in a Docker container for the various

case described in Section IV (A). For the ease of

presentation of the results, we used the following

abbreviations for the microservices namely Linpack (L),

STREAM (S), Bonnie++ (B) and Netperf (N).
For each experimental outcome, we compute the mean

and standard deviation (SD). The mean indicates the overall
outcome of the experiments in terms of resource
performance. To visualize the effect of interference, we also
calculate interference ratio (IR). IR is calculated using

particular mean value (µi) and the baseline mean value (µ) as

shown in equation 1. Negative IR value shows the
performance degradation while positive IR value shows the
performance increment.

IR = (µi – µ)/ µ (1)

A. CPU Performance (CPU) Evaluation and Analysis

For evaluating the computation performance, we

implemented Linpack microservice in Docker. We ran

experiments to evaluate the performance of Linpack

microservice as per the various case described in Section

IV(A). Fig. 3 shows the CPU performance variation of

Linpack in terms of GFLOPS.
From Fig. 3, we can see that except for Case 2 with

heterogeneous microservices, remaining combinations have
a significant impact on the performance. The worst
performance is shown by Case 2(L+L) with 21%
performance degradation. The reason behind this is the lack
of resource pinning that causes both microservices to

contend for the same core even though more cores are
available. The effect of interference is clearly visible from
Table III that shows the combination (L+S) have minimum
interference for all the case. The performance of two Linpack
instance is best when they are running in separate containers
with cgroups constraints enabled with only 14% performance
degradation. The remaining performances are comparable
with the baseline performance.

One more point to notice from the result of Fig. 4 and
Table III is that there is not much variation in the
performance of containers caused due to constraining the
resources as seen from Case 3a and 3b, but the performance
is always better for Case 3a where one container can use
extra resources not used by the other containers. The result
also infers the interference effect between two containers
running Linpack instance is much lesser than the interference
caused by two Linpack instance running inside a single
container. This shows that inter-container interference is
lesser than intra-container interference while considering
similar type of microservices.

Figure 4. Average CPU Performance of Linpack. Black bars on top show

the SD.

TABLE III. IR VALUE FOR LINPACK

L+L L+S L+B L+N

Case 2 -0.2102 0.2421 0.0267 0.0856

Case 3a -0.1613 -0.1085 -0.1310 -0.0125

Case 3b -0.1487 -0.1642 -0.1752 -0.0805

B. Memory Evaluation and Analysis

For memory performance evaluation, we implemented
STREAM microservice deployed inside a Docker container.
The simplicity of STREAM makes it suitable for sustainable
memory evaluation. The average result of all the four vector
operations (COPY, SCALE, ADD and TRIAD) for different
case of STREAM expressed in GB/sec are shown in Table
IV. The result shows that a performance gain is achieved
when STREAM is deployed with different microservices
collocated inside a container (Case2) with an average of 2%
performance gain. Also, the performance of two instances of
STREAM is better for Case 2. For Case 3a and 3b, the best

performance is achieved when STREAM is deployed with
Bonnie++ followed by Netperf and Linpack. The
performance is worst with high standard deviation when two
similar instances are deployed in separate containers as
shown in Case 3a and 3b.

Fig. 5 shows the IR values for all the case. A
performance gain for Case 2 (S+L), (S+B), (S+N) for all
operations can be easily visualized from the positive IR
values. The result also shows that the effect of interference is
very less for memory intensive microservices as the
performance is nearly same as the baseline performance for
all the case except multiple instances of STREAM.

C. Disk I/O Evaluation and Analysis

To evaluate the I/O capacity of the storage disk, we used

Bonnie++ microservice that creates a large dataset atleast

twice the size of inbuilt memory. It evaluates multiple

performance parameters but we are concerned only with

sequential block output and input, sequential block rewrite

and random seeks. The average performance result is shown

in Table V while the IR variation is shown in Fig. 6.

The result shows the similar interference pattern

indicating, running multiple instances of Bonnie++ creates

higher contention while executing either in a single

container or separate containers. The performance is worst

for random seek with a maximum degradation of 66 % for

Case 2 (B+B). The best performance is achieved by the

combination of Bonnie++ with Netperf followed by Linpack

and STREAM for all the case. One more point to notice

from Table V is that the performance of collocated

microservices inside a single container is comparable to the

performance of microservices running in multiple

containers.

TABLE IV. AVERAGE MEMORY PERFORMANCE OF STREAM. THE

STANDARD DEVIATION IS SHOWN WITH SQUARE BRACKETS “[]”.

 COPY SCALE ADD TRIAD

1 13.36 [±0.07] 8.10 [±0.03] 11.85 [±0.08] 6.79 [±0.03]

2

S+S 11.42 [±0.78] 7.80 [±0.12] 11.00 [±0.47] 6.63 [±0.04]

S+L 14.01 [±0.20] 8.11 [±0.02] 11.97 [±0.04] 6.80 [±0.02]

S+B 13.45 [±0.40] 8.13 [±0.16] 11.95 [±0.24] 6.85 [±0.10]

S+N 13.89 [±0.04] 8.17 [±0.04] 11.99 [±0.04] 6.83 [±0.03]

3a

S+S 11.29 [±1.51] 7.48 [±0.39] 10.25 [±1.00] 6.44 [±0.17]

S+L 12.98 [±0.74] 7.90 [±0.25] 11.57 [±0.42] 6.66 [±0.17]

S+B 13.42 [±0.20] 7.97 [±0.09] 11.73 [±0.11] 6.69 [±0.11]

S+N 13.16 [±0.20] 7.91 [±0.07] 11.52 [±0.11] 6.65 [±0.05]

3b

S+S 11.18 [±1.33] 7.53 [±0.28] 10.40 [±0.78] 6.53 [±0.17]

S+L 12.81 [±0.50] 7.79 [±0.27] 11.33 [±0.44] 6.61 [±0.16]

S+B 13.13 [±0.50] 7.97 [±0.14] 11.64 [±0.32] 6.68 [±0.13]

S+N 13.22 [±0.09] 7.94 [±0.05] 11.58 [±0.02] 6.68 [±0.02]

Figure 5. IR value for STREAM. Horizontal axis labels represent various

case. 1-4 represents (S+S), (S+L), (S+B) and (S+N) for Case 2. Similarly,

4-8 and 8-12 represent different scenarios for Case 3a and 3b respectively.

Figure 6. IR value for Bonnie++. Horizontal axis labels represent various

case. 1-4 represents (B+B), (B+L), (B+S) and (B+N) for Case 2. Similarly,

5-8 and 9-12 represent different scenarios of Case 3a and 3b respectively.

The result also shows that, except for the case of multiple
instances of Bonnie++ (B+B), the performance is nearly
equal to the baseline performance. Very small deviation from
the baseline performance for all the case except for (B+B) as
shown in Fig. 6 exhibits that the performance of Bonnie++ is
less affected by other microservice execution.

D. Network Performance Analysis:

To analyze the network performance, we used Netperf
microservice operating one container as a server and another
container as a client. The server is running the “netserver”
application while the client is running “netperf” application.
A stream of data is sent from client to server for an interval
of 120 seconds following TCP protocol and the network
throughput is calculated. The experimental outcomes for the
various case are shown in Fig. 7. Table VI shows the
variation of IR values.

The result shows that the performance of network
intensive microservices (Netperf) is not much affected by
any other microservices when deployed in separate
containers. The best performance is achieved for Netperf
instance deployed with other Netperf instance followed by
Linpack deployed in separate containers. A large

performance degradation is noticed (up to 23% for Case 3a
and 3b and 31% for Case 2) for the execution of Netperf
with Bonnie++. In Case 2, for both competing and
independent microservices, a large performance degradation
is observed (up to 45% for Case 2 (N+L)). One more
observation is that the performance of Case 3a and 3b are
similar showing that the cgroups resource constraint does not
have a significant impact on network intensive
microservices.

TABLE V. AVERAGE I/O PERFORMANCE OF BONNIE++. THE

STANDARD DEVIATION IS SHOWN WITH SQUARE BRACKETS “[]”.

 B Output B Input B Rewrite R Seek

1 296.3 [±8.23] 340.8 [±8.61] 145.7 [±2.78] 10.5 [±0.61]

2

B+B 156.1 [±31.88] 146.8 [±2.71] 64.5 [±2.54] 3.5 [±0.15]

B+L 277.0 [±12.23] 274.0 [±9.10] 126.9 [±3.09] 9.7 [±0.82]

B+S 283.0 [±7.98] 286.6 [±7.75] 128.8 [±4.12] 10.0 [±0.77]

B+N 303.4 [±14.81] 314.2 [±8.13] 128.0 [±3.13] 10.6 [±1.22]

3a

B+B 145.5 [±4.71] 149.3 [±1.51] 65.1 [±1.20] 3.8 [±0.13]

B+L 277.6 [±11.63] 262.1 [±15.63] 129.0 [±4.45] 9.1 [±1.74]

B+S 283.4 [±8.04] 285.0 [±7.94] 129.3 [±3.36] 10.2 [±0.75]

B+N 295.7 [±11.90] 322.7 [±13.89] 131.2 [±4.45] 11.4 [±0.77]

3b

B+B 150.7 [±5.90] 146.7 [±5.22] 65.8 [±1.59] 4.8 [±0.90]

B+L 292.2 [±13.05] 285.6 [±6.08] 134.4 [±3.11] 9.6 [±0.60]

B+S 273.6 [±9.14] 287.4 [±7.80] 133.5 [±3.49] 9.6 [±1.36]

B+N 293.3 [±9.37] 286.9 [±16.96] 133.2 [±6.25] 10.0 [±1.26]

Figure 7. Average Network Performance of Netperf TCP Stream. Black

bars on top show the SD.

TABLE VI. IR VALUE FOR NETPERF TCP STREAM

N+N N+L N+S N+B

Case 2 -0.3652 -0.4560 -0.4215 -0.3127

Case 3a -0.0269 -0.0747 -0.1464 -0.2381

Case 3b -0.0251 -0.0581 -0.1150 -0.2382

VI. CONCLUSIONS AND FUTURE WORK

Containers are now considered as a viable alternative for
VM in cloud infrastructure services as they provide
virtualization advantages with bare metal performance. They
bind all the necessary software in the form of image and can
easily be deployed in any environment. These advantages
make them a suitable choice for microservices with complex
hardware or software requirements e.g. HPC applications. To
get the full benefit from container-based virtualization, it is
important to understand how multiple microservices running
in same or different containers interfere with the
performance of other microservices.

In this paper, we benchmarked the performance of
containerized microservices in different scenarios. In
particular, we conducted experimental evaluations using
HPC-based microservices to study the interference issues
caused by co-location of microservices in a single container
and across multiple containers both running on a single host.
The result provides a detailed insight about the performance
variation of the microservices. The findings are as follows.

 Execution of multiple microservices inside a
container is also a feasible deployment option as it
gives comparable (sometimes better) performance
than the baseline except for multiple execution of
similar type of microservices.

 CPU intensive microservices can give better
performance when running with either memory or
disk intensive microservices. Memory and disk
intensive microservices are not affected by other
microservices running in either same container or
multiple containers. The performance of network
intensive microservices impacts any other
microservices that are running within the same
container.

In the future, we aim to conduct further research to
develop a framework that takes into consideration such
interference effects while provisioning microservices-based
application on containers.

REFERENCES

[1] P. Barham et al., “Xen and the Art of Virtualization,” ACM SIGOPS
Oper. Syst. Rev., vol. 37, no. 5, pp. 164–177, 2003.

[2] “VMware hypervisor.” [Online]. Available:
https://www.vmware.com/products/vsphere-hypervisor.

[3] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the
Linux Virtual Machine Monitor,” in Proceedings of the Linux
symposium, 2007, pp. 225–230.

[4] “Docker.” [Online]. Available: https://www.docker.com.

[5] “LXC.” [Online]. Available: https://linuxcontainers.org.

[6] “CoreOS is building a container runtime, rkt.” [Online]. Available:
https://coreos.com/blog/rocket.html.

[7] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and Linux containers,”
in Proceedings of the 2015 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2015, pp.
171–172.

[8] R. Morabito, J. Kjällman, and M. Komu, “Hypervisors vs .
Lightweight Virtualization : a Performance Comparison,” in

Proceedings of the 2015 IEEE International Conference on Cloud
Engineering Hypervisors, 2015, pp. 386–393.

[9] J. Higgins, V. Holmes, and C. Venters, “Orchestrating Docker
Containers in the HPC Environment,” in Proceedings of the
International Conference on High Performance Computing, 2015, pp.
506–513.

[10] C. Ruiz, E. Jeanvoine, and L. Nussbaum, “Performance Evaluation of
Containers for HPC,” in Proceedings of the European Conference on
Parallel Processing, 2015, pp. 813–824.

[11] M. Fazio, A. Celesti, R. Ranjan, C. Liu, L. Chen, and M. Villari,
“Open Issues in Scheduling Microservices in the Cloud,” IEEE Cloud
Computing, vol. 3, no. 5, pp. 81–88, 2016.

[12] “Heroku.” [Online]. Available: https://www.heroku.com.

[13] “OpenShift.” [Online]. Available: https://www.openshift.com.

[14] “CloudFoundry.” [Online]. Available: http://www.cloudfoundry.org.

[15] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs
Containerization to support PaaS,” in Proceedings of the 2014 IEEE
International Conference on Cloud Engineering Virtualization, 2014,
pp. 610–614.

[16] B. Hindman et al., “Mesos : A Platform for Fine-Grained Resource
Sharing in the Data Center,” in NSDI, 2011.

[17] “Kolla.” [Online]. Available: https://github.com/stackforge/kolla.

[18] K. Bankole, D. Krook, S. Murakami, and M. Silveyra, “A practical
approach to dockerizing OpenStack high availability,” OpenStack
Paris Summit, 2014. .

[19] Z. Li, M. Kihl, Q. Lu, and J. A. Andersson, “Performance Overhead
Comparison between Hypervisor and Container based
Virtualization,” in Proceedings of the 2017 IEEE 31st International
Conference on Advanced Information Networking and Applications
Performance, 2017, pp. 955–962.

[20] Z. Kozhirbayev and R. O. Sinnott, “A performance comparison of
container-based technologies for the Cloud,” Futur. Gener. Comput.
Syst., vol. 68, pp. 175–182, 2017.

[21] P. Sharma, L. Chaufournier, P. Shenoy, and Y. C. Tay, “Containers
and Virtual Machines at Scale: A Comparative Study,” in
Proceedings of the 17th International Middleware Conference on -
Middleware ’16, 2016, pp. 1–13.

[22] K. Ye and Y. Ji, “Performance Tuning and Modeling for Big Data
Applications in Docker Containers,” in Proceedings of the 2017 IEEE
International Conference on Networking, Architecture, and Storage,
(NAS 2017), 2017.

[23] Z. Li, L. O. Brien, and H. Zhang, “CEEM : A Practical Methodology
for Cloud Services Evaluation,” in Proceedings of the 2013 IEEE
Ninth World Congress on Services, 2013, pp. 44–51.

[24] “Intel Math Kernel Library- Linpack.” [Online]. Available:
https://software.intel.com/en-us/articles/intel-math-kernel-
librarylinpackdownload.

[25] J. McCalpin, “STREAM: Sustainable Memory Bandwidth in High-
Performance Computers,” pp. 1–4, 1995.

[26] “Bonnie++.” [Online]. Available: http://www.coker.com.au/
bonnie++.

[27] “The Netperf Homepage.” [Online]. Available: http://www.netperf.
org.

[28] Z. Li, L. O. Brien, H. Zhang, and R. Cai, “A Factor Framework for
Experimental Design for Performance Evaluation of Commercial
Cloud Services,” in Proceedings of the 2012 IEEE 4th International
Conference on Cloud Computing Technology and Science, 2012, pp.
169–176.

[29] “Docker: A ‘Shipping Container’ for Linux code.” [Online].
Available: https://www.linux.com/news/docker-shipping-container-
linux-code.

https://coreos.com/blog/rocket.html
http://www.cloudfoundry.org/

